論文の概要: Active Learning for Deep Neural Networks on Edge Devices
- arxiv url: http://arxiv.org/abs/2106.10836v2
- Date: Wed, 22 Mar 2023 09:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 08:31:26.150211
- Title: Active Learning for Deep Neural Networks on Edge Devices
- Title(参考訳): エッジデバイスを用いたディープニューラルネットワークの能動的学習
- Authors: Yuya Senzaki, Christian Hamelain
- Abstract要約: 本稿では,エッジデバイス上でのニューラルネットワークの実用的な能動学習問題を定式化する。
本稿では,この問題に対処するための一般的なタスクに依存しないフレームワークを提案する。
我々は,実生活シナリオをシミュレートする実践的な環境で,分類タスクとオブジェクト検出タスクの両方に対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: When dealing with deep neural network (DNN) applications on edge devices,
continuously updating the model is important. Although updating a model with
real incoming data is ideal, using all of them is not always feasible due to
limits, such as labeling and communication costs. Thus, it is necessary to
filter and select the data to use for training (i.e., active learning) on the
device. In this paper, we formalize a practical active learning problem for
DNNs on edge devices and propose a general task-agnostic framework to tackle
this problem, which reduces it to a stream submodular maximization. This
framework is light enough to be run with low computational resources, yet
provides solutions whose quality is theoretically guaranteed thanks to the
submodular property. Through this framework, we can configure data selection
criteria flexibly, including using methods proposed in previous active learning
studies. We evaluate our approach on both classification and object detection
tasks in a practical setting to simulate a real-life scenario. The results of
our study show that the proposed framework outperforms all other methods in
both tasks, while running at a practical speed on real devices.
- Abstract(参考訳): エッジデバイス上のディープニューラルネットワーク(DNN)アプリケーションを扱う場合、モデルを継続的に更新することが重要である。
実際のデータでモデルを更新するのは理想的ですが、ラベリングや通信コストといった制限のため、それらすべてを使用することは必ずしも可能ではありません。
したがって、デバイス上のトレーニング(すなわちアクティブラーニング)に使用するデータをフィルタリングして選択する必要がある。
本稿では,エッジデバイス上でのDNNの実用的なアクティブラーニング問題を定式化し,この問題に対処するための一般的なタスク非依存フレームワークを提案する。
このフレームワークは低計算資源で動かすのに十分軽量であるが、サブモジュラー特性により理論的に保証されるソリューションを提供する。
このフレームワークにより、従来のアクティブラーニング研究で提案された手法を含め、データ選択基準を柔軟に設定できる。
我々は,実生活シナリオをシミュレートする実践的な環境で,分類タスクとオブジェクト検出タスクの両方に対するアプローチを評価する。
本研究の結果から,提案するフレームワークは,実機上で実行しながら,両方のタスクにおいて他の手法よりも優れていた。
関連論文リスト
- Learning from the Giants: A Practical Approach to Underwater Depth and Surface Normals Estimation [3.0516727053033392]
本稿では,単眼深度と表面正規化推定(MDSNE)のための新しいディープラーニングモデルを提案する。
これは特に、CNNとTransformerを統合するハイブリッドアーキテクチャを使用して、水中環境向けに調整されている。
我々のモデルはパラメータを90%削減し、トレーニングコストを80%削減し、リソース制約されたデバイス上でリアルタイムな3D認識を可能にする。
論文 参考訳(メタデータ) (2024-10-02T22:41:12Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREAは、トレーニングなしメトリクスの最適化組み合わせを利用してアーキテクチャをランク付けする、独自のセルベースの進化NASアルゴリズムである。
本実験はNAS-Bench-101とNATS-Benchの共通ベンチマークを用いて,フリーレアがモデル自動設計のための高速で効率的かつ効果的な探索手法であることを実証した。
論文 参考訳(メタデータ) (2022-06-17T11:16:28Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object
Tracking [8.791710193028903]
本研究は,グラフに基づくデータ構造を用いて問題をモデル化する多目的追跡(MOT)への多くの従来のアプローチに従う。
複数のタイムステップにまたがるデータ関連問題を表す動的無方向性グラフに基づくフレームワークを作成する。
また、メモリ効率が高く、リアルタイムなオンラインアルゴリズムを作成するために対処する必要がある計算問題に対するソリューションと提案も提供します。
論文 参考訳(メタデータ) (2021-01-11T21:52:25Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。