Active Learning for Deep Neural Networks on Edge Devices
- URL: http://arxiv.org/abs/2106.10836v2
- Date: Wed, 22 Mar 2023 09:12:09 GMT
- Title: Active Learning for Deep Neural Networks on Edge Devices
- Authors: Yuya Senzaki, Christian Hamelain
- Abstract summary: This paper formalizes a practical active learning problem for neural networks on edge devices.
We propose a general task-agnostic framework to tackle this problem, which reduces it to a stream submodular property.
We evaluate our approach on both classification and object detection tasks in a practical setting to simulate a real-life scenario.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: When dealing with deep neural network (DNN) applications on edge devices,
continuously updating the model is important. Although updating a model with
real incoming data is ideal, using all of them is not always feasible due to
limits, such as labeling and communication costs. Thus, it is necessary to
filter and select the data to use for training (i.e., active learning) on the
device. In this paper, we formalize a practical active learning problem for
DNNs on edge devices and propose a general task-agnostic framework to tackle
this problem, which reduces it to a stream submodular maximization. This
framework is light enough to be run with low computational resources, yet
provides solutions whose quality is theoretically guaranteed thanks to the
submodular property. Through this framework, we can configure data selection
criteria flexibly, including using methods proposed in previous active learning
studies. We evaluate our approach on both classification and object detection
tasks in a practical setting to simulate a real-life scenario. The results of
our study show that the proposed framework outperforms all other methods in
both tasks, while running at a practical speed on real devices.
Related papers
- Learning from the Giants: A Practical Approach to Underwater Depth and Surface Normals Estimation [3.0516727053033392]
This paper presents a novel deep learning model for Monocular Depth and Surface Normals Estimation (MDSNE)
It is specifically tailored for underwater environments, using a hybrid architecture that integrates CNNs with Transformers.
Our model reduces parameters by 90% and training costs by 80%, allowing real-time 3D perception on resource-constrained devices.
arXiv Detail & Related papers (2024-10-02T22:41:12Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREA is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures.
Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design.
arXiv Detail & Related papers (2022-06-17T11:16:28Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object
Tracking [8.791710193028903]
This study follows many previous approaches to multi-object tracking (MOT) that model the problem using graph-based data structures.
We create a framework based on dynamic undirected graphs that represent the data association problem over multiple timesteps.
We also provide solutions and propositions for the computational problems that need to be addressed to create a memory-efficient, real-time, online algorithm.
arXiv Detail & Related papers (2021-01-11T21:52:25Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.