Spliced Binned-Pareto Distribution for Robust Modeling of Heavy-tailed
Time Series
- URL: http://arxiv.org/abs/2106.10952v1
- Date: Mon, 21 Jun 2021 09:48:03 GMT
- Title: Spliced Binned-Pareto Distribution for Robust Modeling of Heavy-tailed
Time Series
- Authors: Elena Ehrlich, Laurent Callot, Fran\c{c}ois-Xavier Aubet
- Abstract summary: We propose a novel method to robustly and accurately model time series with heavy-tailed noise.
Our method allows the capture of time dependencies in the higher order moments of the distribution.
We compare the robustness and the accuracy of our method to other state of the art methods on Twitter mentions count time series.
- Score: 1.0312968200748118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a novel method to robustly and accurately model time
series with heavy-tailed noise, in non-stationary scenarios. In many practical
application time series have heavy-tailed noise that significantly impacts the
performance of classical forecasting models; in particular, accurately modeling
a distribution over extreme events is crucial to performing accurate time
series anomaly detection. We propose a Spliced Binned-Pareto distribution which
is both robust to extreme observations and allows accurate modeling of the full
distribution. Our method allows the capture of time dependencies in the higher
order moments of the distribution such as the tail heaviness. We compare the
robustness and the accuracy of the tail estimation of our method to other state
of the art methods on Twitter mentions count time series.
Related papers
- Series-to-Series Diffusion Bridge Model [8.590453584544386]
We present a comprehensive framework that encompasses most existing diffusion-based methods.
We propose a novel diffusion-based time series forecasting model, the Series-to-Series Diffusion Bridge Model ($mathrmS2DBM$)
Experimental results demonstrate that $mathrmS2DBM$ delivers superior performance in point-to-point forecasting.
arXiv Detail & Related papers (2024-11-07T07:37:34Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - DynaConF: Dynamic Forecasting of Non-Stationary Time Series [4.286546152336783]
We propose a new method to model non-stationary conditional distributions over time.
We show that our model can adapt to non-stationary time series better than state-of-the-art deep learning solutions.
arXiv Detail & Related papers (2022-09-17T21:40:02Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate
Time Series Forecasting [4.131842516813833]
We introduce a novel temporal latent auto-encoder method which enables nonlinear factorization of time series.
By imposing a probabilistic latent space model, complex distributions of the input series are modeled via the decoder.
Our model achieves state-of-the-art performance on many popular multivariate datasets, with gains sometimes as high as $50%$ for several standard metrics.
arXiv Detail & Related papers (2021-01-25T22:29:40Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z) - Drift-Adjusted And Arbitrated Ensemble Framework For Time Series
Forecasting [0.491574468325115]
Time series forecasting is a challenging problem due to complex and evolving nature of time series data.
No one method is universally effective for all kinds of time series data.
We propose a re-weighting based method to adjust the assigned weights to various forecasters in order to account for such distribution-drift.
arXiv Detail & Related papers (2020-03-16T10:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.