Extractive approach for text summarisation using graphs
- URL: http://arxiv.org/abs/2106.10955v1
- Date: Mon, 21 Jun 2021 10:03:34 GMT
- Title: Extractive approach for text summarisation using graphs
- Authors: Kastriot Kadriu and Milenko Obradovic
- Abstract summary: Our paper explores different graph-related algorithms that can be used in solving the text summarization problem using an extractive approach.
We consider two metrics: sentence overlap and edit distance for measuring sentence similarity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language processing is an important discipline with the aim of
understanding text by its digital representation, that due to the diverse way
we write and speak, is often not accurate enough. Our paper explores different
graph-related algorithms that can be used in solving the text summarization
problem using an extractive approach. We consider two metrics: sentence overlap
and edit distance for measuring sentence similarity.
Related papers
- Efficiently Leveraging Linguistic Priors for Scene Text Spotting [63.22351047545888]
This paper proposes a method that leverages linguistic knowledge from a large text corpus to replace the traditional one-hot encoding used in auto-regressive scene text spotting and recognition models.
We generate text distributions that align well with scene text datasets, removing the need for in-domain fine-tuning.
Experimental results show that our method not only improves recognition accuracy but also enables more accurate localization of words.
arXiv Detail & Related papers (2024-02-27T01:57:09Z) - DEIM: An effective deep encoding and interaction model for sentence
matching [0.0]
We propose a sentence matching method based on deep encoding and interaction to extract deep semantic information.
In the encoder layer,we refer to the information of another sentence in the process of encoding a single sentence, and later use a algorithm to fuse the information.
In the interaction layer, we use a bidirectional attention mechanism and a self-attention mechanism to obtain deep semantic information.
arXiv Detail & Related papers (2022-03-20T07:59:42Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Multiplex Graph Neural Network for Extractive Text Summarization [34.185093491514394]
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary.
We propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words.
Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization.
arXiv Detail & Related papers (2021-08-29T16:11:01Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z) - Match-Ignition: Plugging PageRank into Transformer for Long-form Text
Matching [66.71886789848472]
We propose a novel hierarchical noise filtering model, namely Match-Ignition, to tackle the effectiveness and efficiency problem.
The basic idea is to plug the well-known PageRank algorithm into the Transformer, to identify and filter both sentence and word level noisy information.
Noisy sentences are usually easy to detect because the sentence is the basic unit of a long-form text, so we directly use PageRank to filter such information.
arXiv Detail & Related papers (2021-01-16T10:34:03Z) - Narrative Incoherence Detection [76.43894977558811]
We propose the task of narrative incoherence detection as a new arena for inter-sentential semantic understanding.
Given a multi-sentence narrative, decide whether there exist any semantic discrepancies in the narrative flow.
arXiv Detail & Related papers (2020-12-21T07:18:08Z) - Inducing Alignment Structure with Gated Graph Attention Networks for
Sentence Matching [24.02847802702168]
This paper proposes a graph-based approach for sentence matching.
We represent a sentence pair as a graph with several carefully design strategies.
We then employ a novel gated graph attention network to encode the constructed graph for sentence matching.
arXiv Detail & Related papers (2020-10-15T11:25:54Z) - Pareto Probing: Trading Off Accuracy for Complexity [87.09294772742737]
We argue for a probe metric that reflects the fundamental trade-off between probe complexity and performance.
Our experiments with dependency parsing reveal a wide gap in syntactic knowledge between contextual and non-contextual representations.
arXiv Detail & Related papers (2020-10-05T17:27:31Z) - Generalized Word Shift Graphs: A Method for Visualizing and Explaining
Pairwise Comparisons Between Texts [0.15833270109954134]
A common task in computational text analyses is to quantify how two corpora differ according to a measurement like word frequency, sentiment, or information content.
We introduce generalized word shift graphs, visualizations which yield a meaningful and interpretable summary of how individual words contribute to the variation between two texts.
We show that this framework naturally encompasses many of the most commonly used approaches for comparing texts, including relative frequencies, dictionary scores, and entropy-based measures like the Kullback-Leibler and Jensen-Shannon divergences.
arXiv Detail & Related papers (2020-08-05T17:27:11Z) - Research on Annotation Rules and Recognition Algorithm Based on Phrase
Window [4.334276223622026]
We propose labeling rules based on phrase windows, and designed corresponding phrase recognition algorithms.
The labeling rule uses phrases as the minimum unit, di-vides sentences into 7 types of nestable phrase types, and marks the grammatical dependencies between phrases.
The corresponding algorithm, drawing on the idea of identifying the target area in the image field, can find the start and end positions of various phrases in the sentence.
arXiv Detail & Related papers (2020-07-07T00:19:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.