Adaptive Learning Rate and Momentum for Training Deep Neural Networks
- URL: http://arxiv.org/abs/2106.11548v1
- Date: Tue, 22 Jun 2021 05:06:56 GMT
- Title: Adaptive Learning Rate and Momentum for Training Deep Neural Networks
- Authors: Zhiyong Hao, Yixuan Jiang, Huihua Yu and Hsiao-Dong Chiang
- Abstract summary: We develop a fast training method motivated by the nonlinear Conjugate Gradient (CG) framework.
Experiments in image classification datasets show that our method yields faster convergence than other local solvers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress on deep learning relies heavily on the quality and efficiency
of training algorithms. In this paper, we develop a fast training method
motivated by the nonlinear Conjugate Gradient (CG) framework. We propose the
Conjugate Gradient with Quadratic line-search (CGQ) method. On the one hand, a
quadratic line-search determines the step size according to current loss
landscape. On the other hand, the momentum factor is dynamically updated in
computing the conjugate gradient parameter (like Polak-Ribiere). Theoretical
results to ensure the convergence of our method in strong convex settings is
developed. And experiments in image classification datasets show that our
method yields faster convergence than other local solvers and has better
generalization capability (test set accuracy). One major advantage of the paper
method is that tedious hand tuning of hyperparameters like the learning rate
and momentum is avoided.
Related papers
- Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - DLCFT: Deep Linear Continual Fine-Tuning for General Incremental
Learning [29.80680408934347]
We propose an alternative framework to incremental learning where we continually fine-tune the model from a pre-trained representation.
Our method takes advantage of linearization technique of a pre-trained neural network for simple and effective continual learning.
We show that our method can be applied to general continual learning settings, we evaluate our method in data-incremental, task-incremental, and class-incremental learning problems.
arXiv Detail & Related papers (2022-08-17T06:58:14Z) - Practical Convex Formulation of Robust One-hidden-layer Neural Network
Training [12.71266194474117]
We show that the training of a one-hidden-layer, scalar-output fully-connected ReLULU neural network can be reformulated as a finite-dimensional convex program.
We derive a convex optimization approach to efficiently solve the "adversarial training" problem.
Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods.
arXiv Detail & Related papers (2021-05-25T22:06:27Z) - Accumulated Decoupled Learning: Mitigating Gradient Staleness in
Inter-Layer Model Parallelization [16.02377434191239]
We propose an accumulated decoupled learning (ADL) which incorporates the gradient accumulation technique to mitigate the stale gradient effect.
We prove that the proposed method can converge to critical points, i.e., the gradients converge to 0, in spite of its asynchronous nature.
The ADL is shown to outperform several state-of-the-arts in the classification tasks, and is the fastest among the compared methods.
arXiv Detail & Related papers (2020-12-03T11:52:55Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Improved Analysis of Clipping Algorithms for Non-convex Optimization [19.507750439784605]
Recently, citetzhang 2019gradient show that clipped (stochastic) Gradient Descent (GD) converges faster than vanilla GD/SGD.
Experiments confirm the superiority of clipping-based methods in deep learning tasks.
arXiv Detail & Related papers (2020-10-05T14:36:59Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
We propose a simple literature-based method for the efficient approximation of gradients in neural ODE models.
We compare it with the reverse dynamic method to train neural ODEs on classification, density estimation, and inference approximation tasks.
arXiv Detail & Related papers (2020-03-11T13:15:57Z) - Disentangling Adaptive Gradient Methods from Learning Rates [65.0397050979662]
We take a deeper look at how adaptive gradient methods interact with the learning rate schedule.
We introduce a "grafting" experiment which decouples an update's magnitude from its direction.
We present some empirical and theoretical retrospectives on the generalization of adaptive gradient methods.
arXiv Detail & Related papers (2020-02-26T21:42:49Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
Training deep neural networks using a large batch size has shown promising results and benefits many real-world applications.
In this paper, we propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for large-batch training.
Based on our analysis, we bridge the gap and illustrate the theoretical insights for three popular large-batch training techniques.
arXiv Detail & Related papers (2020-02-04T23:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.