Heterogeneous Treatment Effects in Regression Discontinuity Designs
- URL: http://arxiv.org/abs/2106.11640v1
- Date: Tue, 22 Jun 2021 09:47:28 GMT
- Title: Heterogeneous Treatment Effects in Regression Discontinuity Designs
- Authors: \'Agoston Reguly
- Abstract summary: The paper proposes a supervised machine learning algorithm to uncover treatment effect heterogeneity in classical regression discontinuity designs.
I study the performance of the method through Monte Carlo simulations and apply it to the data set compiled by Pop-Eleches and Urquiola (2013) to uncover various sources of heterogeneity in the impact of attending a better secondary school in Romania.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper proposes a supervised machine learning algorithm to uncover
treatment effect heterogeneity in classical regression discontinuity (RD)
designs. Extending Athey and Imbens (2016), I develop a criterion for building
an honest ``regression discontinuity tree'', where each leaf of the tree
contains the RD estimate of a treatment (assigned by a common cutoff rule)
conditional on the values of some pre-treatment covariates. It is a priori
unknown which covariates are relevant for capturing treatment effect
heterogeneity, and it is the task of the algorithm to discover them, without
invalidating inference. I study the performance of the method through Monte
Carlo simulations and apply it to the data set compiled by Pop-Eleches and
Urquiola (2013) to uncover various sources of heterogeneity in the impact of
attending a better secondary school in Romania.
Related papers
- Heterogeneous Treatment Effects in Panel Data [1.5535138991304305]
We propose and evaluate a new method that partitions observations into disjoint clusters with similar treatment effects using a regression tree.
Our theoretical results establish the convergence of the resulting estimates to the true treatment effects.
arXiv Detail & Related papers (2024-06-09T04:02:08Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Generalized Causal Tree for Uplift Modeling [7.614863322262727]
Uplift modeling is crucial in various applications ranging from marketing and policy-making to personalized recommendations.
The main objective is to learn optimal treatment allocations for a heterogeneous population.
We propose a generalization of tree-based approaches to tackle multiple discrete and continuous-valued treatments.
arXiv Detail & Related papers (2022-02-04T22:27:49Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - A Twin Neural Model for Uplift [59.38563723706796]
Uplift is a particular case of conditional treatment effect modeling.
We propose a new loss function defined by leveraging a connection with the Bayesian interpretation of the relative risk.
We show our proposed method is competitive with the state-of-the-art in simulation setting and on real data from large scale randomized experiments.
arXiv Detail & Related papers (2021-05-11T16:02:39Z) - Sparse Bayesian Causal Forests for Heterogeneous Treatment Effects
Estimation [0.0]
This paper develops a sparsity-inducing version of Bayesian Causal Forests.
It is designed to estimate heterogeneous treatment effects using observational data.
arXiv Detail & Related papers (2021-02-12T15:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.