Scalable Intervention Target Estimation in Linear Models
- URL: http://arxiv.org/abs/2111.07512v1
- Date: Mon, 15 Nov 2021 03:16:56 GMT
- Title: Scalable Intervention Target Estimation in Linear Models
- Authors: Burak Varici, Karthikeyan Shanmugam, Prasanna Sattigeri, Ali Tajer
- Abstract summary: Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
- Score: 52.60799340056917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of estimating the unknown intervention
targets in a causal directed acyclic graph from observational and
interventional data. The focus is on soft interventions in linear structural
equation models (SEMs). Current approaches to causal structure learning either
work with known intervention targets or use hypothesis testing to discover the
unknown intervention targets even for linear SEMs. This severely limits their
scalability and sample complexity. This paper proposes a scalable and efficient
algorithm that consistently identifies all intervention targets. The pivotal
idea is to estimate the intervention sites from the difference between the
precision matrices associated with the observational and interventional
datasets. It involves repeatedly estimating such sites in different subsets of
variables. The proposed algorithm can be used to also update a given
observational Markov equivalence class into the interventional Markov
equivalence class. Consistency, Markov equivalency, and sample complexity are
established analytically. Finally, simulation results on both real and
synthetic data demonstrate the gains of the proposed approach for scalable
causal structure recovery. Implementation of the algorithm and the code to
reproduce the simulation results are available at
\url{https://github.com/bvarici/intervention-estimation}.
Related papers
- Hierarchical and Density-based Causal Clustering [6.082022112101251]
We propose plug-in estimators that are simple and readily implementable using off-the-shelf algorithms.
We go on to study their rate of convergence, and show that the additional cost of causal clustering is essentially the estimation error of the outcome regression functions.
arXiv Detail & Related papers (2024-11-02T14:01:04Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Characterization and Greedy Learning of Gaussian Structural Causal
Models under Unknown Interventions [3.441021278275805]
We consider the problem of recovering the causal structure underlying observations when the targets of the interventions in each experiment are unknown.
We derive a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets.
We leverage this procedure and evaluate the performance of GnIES on synthetic, real, and semi-synthetic data sets.
arXiv Detail & Related papers (2022-11-27T17:37:21Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
arXiv Detail & Related papers (2022-05-05T12:32:08Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.