Towards Reducing Labeling Cost in Deep Object Detection
- URL: http://arxiv.org/abs/2106.11921v1
- Date: Tue, 22 Jun 2021 16:53:09 GMT
- Title: Towards Reducing Labeling Cost in Deep Object Detection
- Authors: Ismail Elezi, Zhiding Yu, Anima Anandkumar, Laura Leal-Taixe, Jose M.
Alvarez
- Abstract summary: We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
- Score: 61.010693873330446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have reached very high accuracy on object detection but
their success hinges on large amounts of labeled data. To reduce the dependency
on labels, various active-learning strategies have been proposed, typically
based on the confidence of the detector. However, these methods are biased
towards best-performing classes and can lead to acquired datasets that are not
good representatives of the data in the testing set. In this work, we propose a
unified framework for active learning, that considers both the uncertainty and
the robustness of the detector, ensuring that the network performs accurately
in all classes. Furthermore, our method is able to pseudo-label the very
confident predictions, suppressing a potential distribution drift while further
boosting the performance of the model. Experiments show that our method
comprehensively outperforms a wide range of active-learning methods on PASCAL
VOC07+12 and MS-COCO, having up to a 7.7% relative improvement, or up to 82%
reduction in labeling cost.
Related papers
- Performance Evaluation of Semi-supervised Learning Frameworks for
Multi-Class Weed Detection [15.828967396019143]
Effective weed control plays a crucial role in optimizing crop yield and enhancing agricultural product quality.
Recent advances in precision weed management enabled by ML and DL provide a sustainable alternative.
Semi-supervised learning methods, especially semi-supervised learning, have gained increased attention in the broader domain of computer vision.
arXiv Detail & Related papers (2024-03-06T00:59:51Z) - Credible Teacher for Semi-Supervised Object Detection in Open Scene [106.25850299007674]
In Open Scene Semi-Supervised Object Detection (O-SSOD), unlabeled data may contain unknown objects not observed in the labeled data.
It is detrimental to the current methods that mainly rely on self-training, as more uncertainty leads to the lower localization and classification precision of pseudo labels.
We propose Credible Teacher, an end-to-end framework to prevent uncertain pseudo labels from misleading the model.
arXiv Detail & Related papers (2024-01-01T08:19:21Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
We introduce a novel framework, Balancing Active Learning (BAL), which constructs adaptive sub-pools to balance diverse and uncertain data.
Our approach outperforms all established active learning methods on widely recognized benchmarks by 1.20%.
arXiv Detail & Related papers (2023-12-26T08:14:46Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection [1.6249267147413524]
Semi-supervised object detection (SSOD) has made significant progress with the development of pseudo-label-based end-to-end methods.
Many methods face challenges due to class imbalance, which hinders the effectiveness of the pseudo-label generator.
In this paper, we examine the root causes of low-quality pseudo-labels and present novel learning mechanisms to improve the label generation quality.
arXiv Detail & Related papers (2023-06-04T06:01:53Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
We propose a deep-learning based weakly supervised framework for semantic segmentation of ALS point clouds.
We exploit potential information from unlabeled data subject to incomplete and sparse labels.
Our method achieves an overall accuracy of 83.0% and an average F1 score of 70.0%, which have increased by 6.9% and 12.8% respectively.
arXiv Detail & Related papers (2021-10-04T14:00:23Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.