A Federated Data-Driven Evolutionary Algorithm for Expensive
Multi/Many-objective Optimization
- URL: http://arxiv.org/abs/2106.12086v1
- Date: Tue, 22 Jun 2021 22:33:24 GMT
- Title: A Federated Data-Driven Evolutionary Algorithm for Expensive
Multi/Many-objective Optimization
- Authors: Jinjin Xu, Yaochu Jin, Wenli Du
- Abstract summary: This paper proposes a federated data-driven evolutionary multi-objective/many-objective optimization algorithm.
We leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate.
A new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values.
- Score: 11.92436948211501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven optimization has found many successful applications in the real
world and received increased attention in the field of evolutionary
optimization. Most existing algorithms assume that the data used for
optimization is always available on a central server for construction of
surrogates. This assumption, however, may fail to hold when the data must be
collected in a distributed way and is subject to privacy restrictions. This
paper aims to propose a federated data-driven evolutionary
multi-/many-objective optimization algorithm. To this end, we leverage
federated learning for surrogate construction so that multiple clients
collaboratively train a radial-basis-function-network as the global surrogate.
Then a new federated acquisition function is proposed for the central server to
approximate the objective values using the global surrogate and estimate the
uncertainty level of the approximated objective values based on the local
models. The performance of the proposed algorithm is verified on a series of
multi/many-objective benchmark problems by comparing it with two
state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.
Related papers
- Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization [29.580786235313987]
We introduce the first Inverse Transfer Multiobjective (invTrEMO)
InvTrEMO harnesses the common objective functions in many prevalent areas, even when decision spaces do not precisely align between tasks.
InvTrEMO yields high-precision inverse models as a significant byproduct, enabling the generation of tailored solutions on-demand.
arXiv Detail & Related papers (2023-12-22T14:12:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems [1.0499611180329806]
The proposed algorithm consists of three parts: rank-based learning, hyper-volume-based non-dominated search, and local search in the relatively sparse objective space.
The experimental results of benchmark problems and a real-world application on geothermal reservoir heat extraction optimization demonstrate that the proposed algorithm shows superior performance.
arXiv Detail & Related papers (2023-04-19T06:25:04Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - Data-Driven Evolutionary Multi-Objective Optimization Based on
Multiple-Gradient Descent for Disconnected Pareto Fronts [6.560512252982714]
This paper proposes a data-driven evolutionary multi-objective optimization (EMO) algorithm based on multiple-gradient descent.
Its infill criterion recommends a batch of promising candidate solutions to conduct expensive objective function evaluations.
arXiv Detail & Related papers (2022-05-28T06:01:41Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - A Federated Data-Driven Evolutionary Algorithm [10.609815608017065]
Existing data-driven evolutionary optimization algorithms require that all data are centrally stored.
This paper proposes a federated data-driven evolutionary optimization framework that is able to perform data driven optimization when the data is distributed on multiple devices.
arXiv Detail & Related papers (2021-02-16T17:18:54Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
This paper provides a framework to analyze the convergence of federated heterogeneous optimization algorithms.
We propose FedNova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
arXiv Detail & Related papers (2020-07-15T05:01:23Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.