Near-Optimal Linear Regression under Distribution Shift
- URL: http://arxiv.org/abs/2106.12108v1
- Date: Wed, 23 Jun 2021 00:52:50 GMT
- Title: Near-Optimal Linear Regression under Distribution Shift
- Authors: Qi Lei, Wei Hu, Jason D. Lee
- Abstract summary: We show that linear minimax estimators are within an absolute constant of the minimax risk even among nonlinear estimators for various source/target distributions.
- Score: 63.87137348308034
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Transfer learning is essential when sufficient data comes from the source
domain, with scarce labeled data from the target domain. We develop estimators
that achieve minimax linear risk for linear regression problems under
distribution shift. Our algorithms cover different transfer learning settings
including covariate shift and model shift. We also consider when data are
generated from either linear or general nonlinear models. We show that linear
minimax estimators are within an absolute constant of the minimax risk even
among nonlinear estimators for various source/target distributions.
Related papers
- Minimum-Norm Interpolation Under Covariate Shift [14.863831433459902]
In-distribution research on high-dimensional linear regression has led to the identification of a phenomenon known as textitbenign overfitting
We prove the first non-asymptotic excess risk bounds for benignly-overfit linear interpolators in the transfer learning setting.
arXiv Detail & Related papers (2024-03-31T01:41:57Z) - Statistical Estimation Under Distribution Shift: Wasserstein
Perturbations and Minimax Theory [24.540342159350015]
We focus on Wasserstein distribution shifts, where every data point may undergo a slight perturbation.
We consider perturbations that are either independent or coordinated joint shifts across data points.
We analyze several important statistical problems, including location estimation, linear regression, and non-parametric density estimation.
arXiv Detail & Related papers (2023-08-03T16:19:40Z) - Nonparametric Linear Feature Learning in Regression Through Regularisation [0.0]
We propose a novel method for joint linear feature learning and non-parametric function estimation.
By using alternative minimisation, we iteratively rotate the data to improve alignment with leading directions.
We establish that the expected risk of our method converges to the minimal risk under minimal assumptions and with explicit rates.
arXiv Detail & Related papers (2023-07-24T12:52:55Z) - First Steps Toward Understanding the Extrapolation of Nonlinear Models
to Unseen Domains [35.76184529520015]
This paper makes some initial steps towards analyzing the extrapolation of nonlinear models for structured domain shift.
We prove that the family of nonlinear models of the form $f(x)=sum f_i(x_i)$, can extrapolate to unseen distributions.
arXiv Detail & Related papers (2022-11-21T18:41:19Z) - The Power and Limitation of Pretraining-Finetuning for Linear Regression
under Covariate Shift [127.21287240963859]
We investigate a transfer learning approach with pretraining on the source data and finetuning based on the target data.
For a large class of linear regression instances, transfer learning with $O(N2)$ source data is as effective as supervised learning with $N$ target data.
arXiv Detail & Related papers (2022-08-03T05:59:49Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.