Observable bound for Gaussian illumination
- URL: http://arxiv.org/abs/2106.12109v3
- Date: Thu, 21 Apr 2022 13:24:43 GMT
- Title: Observable bound for Gaussian illumination
- Authors: Su-Yong Lee, Yonggi Jo, Taek Jeong, Junghyun Kim, Dong Hwan Kim,
Dongkyu Kim, Duk Y. Kim, Yong Sup Ihn, and Zaeill Kim
- Abstract summary: We propose observable bounds for Gaussian illumination to maximize the signal-to-noise ratio.
In the quantum regime using a two-mode squeezed vacuum state, our observable receiver outperforms the other feasible receivers.
The corresponding observable cannot be implemented with heterodyne detections due to the additional vacuum noise.
- Score: 2.4171818881149694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose observable bounds for Gaussian illumination to maximize the
signal-to-noise ratio, which minimizes the discrimination error between the
presence and absence of a low-reflectivity target using Gaussian states. The
observable bounds are achieved with mode-by-mode measurements. In the quantum
regime using a two-mode squeezed vacuum state, our observable receiver
outperforms the other feasible receivers whereas it cannot approach the quantum
Chernoff bound. The corresponding observable cannot be implemented with
heterodyne detections due to the additional vacuum noise. In the classical
regime using a thermal state, a receiver implemented with a photon number
difference measurement approaches its bound regardless of the signal mean
photon number, while it asymptotically approaches the classical bound in the
limit of a huge idler mean photon number.
Related papers
- Near-optimal coherent state discrimination via continuously labelled non-Gaussian measurements [3.9482012852779085]
We show that non-Gaussian measurements can achieve near-optimal coherent state discrimination.
We explicitly design two coherent state discrimination protocols based on non-Gaussian detection and unitary operations.
Our results show that we can achieve error rates close to the Helstrom bound at low energies with continuously labelled measurements.
arXiv Detail & Related papers (2024-09-12T13:25:59Z) - Quantum Illumination Advantage for Classification Among an Arbitrary Library of Targets [1.0599607477285324]
Quantum illumination (QI) is the task of querying a scene using a transmitter probe whose quantum state is entangled with a reference beam retained in ideal storage.
We show that in the limit of low transmitter brightness, high loss, and high thermal background, there is a factor of four improvement in the Chernoff exponent of the error probability in discriminating any number of apriori-known reflective targets.
arXiv Detail & Related papers (2024-08-24T06:20:23Z) - Universal quantum frequency comb measurements by spectral mode-matching [39.58317527488534]
We present the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source.
This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect.
arXiv Detail & Related papers (2024-05-28T15:17:21Z) - Relation between quantum illumination and quantum parameter estimation [7.261893691836341]
We show that signal-to-noise ratio and quantum Fisher information are equivalent to Quantum Illumination (QI) in the limit of zero object reflectivity.
We further demonstrate this equivalence by investigating QI protocols employing non-Gaussian states, which are obtained by de-Gaussifying the two-mode squeezed vacuum state with photon addition and photon subtraction.
arXiv Detail & Related papers (2023-08-14T13:57:53Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Noiseless linear amplification in quantum target detection using
Gaussian states [0.0]
Quantum target detection aims to utilise quantum technologies to achieve performances in target detection not possible through purely classical means.
This paper considers the employment of a noiseless linear amplifier at the detection stage of a quantum illumination-based quantum target detection protocol.
arXiv Detail & Related papers (2022-01-07T14:50:42Z) - Quantum illumination with noisy probes: Conditional advantages of non-Gaussianity [0.9999629695552195]
Entangled states, like the two-mode squeezed vacuum state, are known to give quantum advantage in the illumination protocol.
We use non-Gaussian photon-added and -subtracted states, affected by local Gaussian noise on top of the omnipresent thermal noise, as probes in the illumination protocol.
arXiv Detail & Related papers (2021-07-06T17:37:45Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.