論文の概要: BiblioDAP: The 1st Workshop on Bibliographic Data Analysis and
Processing
- arxiv url: http://arxiv.org/abs/2106.12320v1
- Date: Wed, 23 Jun 2021 11:33:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 15:08:05.669070
- Title: BiblioDAP: The 1st Workshop on Bibliographic Data Analysis and
Processing
- Title(参考訳): bibliodap:1st workshop on bibliographic data analysis and processing
- Authors: Zeyd Boukhers, Philipp Mayr, Silvio Peroni
- Abstract要約: データの自動処理は、デジタルライブラリ、データサイエンス、機械学習において非常に重要になる。
データは本質的に異質であり、構造化(引用グラフなど)と非構造化(出版物など)の両方で発生する。
- 参考スコア(独自算出の注目度): 5.145229869202606
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic processing of bibliographic data becomes very important in digital
libraries, data science and machine learning due to its importance in keeping
pace with the significant increase of published papers every year from one side
and to the inherent challenges from the other side. This processing has several
aspects including but not limited to I) Automatic extraction of references from
PDF documents, II) Building an accurate citation graph, III) Author name
disambiguation, etc. Bibliographic data is heterogeneous by nature and occurs
in both structured (e.g. citation graph) and unstructured (e.g. publications)
formats. Therefore, it requires data science and machine learning techniques to
be processed and analysed. Here we introduce BiblioDAP'21: The 1st Workshop on
Bibliographic Data Analysis and Processing.
- Abstract(参考訳): 書誌データの自動処理は, 図書館, データサイエンス, 機械学習において, 書誌データの自動処理が重要となる。
この処理には、I)PDF文書からの参照の自動抽出、II)正確な引用グラフの構築、III)著者名曖昧化等を含むいくつかの側面がある。
書誌データは自然と異質であり、構造化された(例えば)両者で発生する。
引用グラフ)と非構造化(例)
出版物) 形式。
そのため、データサイエンスと機械学習のテクニックを処理および分析する必要がある。
ここでは、BiblioDAP'21: The First Workshop on Bibliographic Data Analysis and Processingを紹介する。
関連論文リスト
- An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
研究者や実践者は、しばしば異なるソースからデータセットを手動でキュレートする必要がある。
本稿では,処理モジュールと解析モジュールを統合したデータ処理フレームワークを提案する。
提案されたフレームワークは使いやすく、柔軟です。
論文 参考訳(メタデータ) (2024-02-26T07:22:51Z) - Interactive Distillation of Large Single-Topic Corpora of Scientific
Papers [1.2954493726326113]
より堅牢だが時間を要するアプローチは、主題の専門家が文書を手書きするデータセットを構成的に構築することである。
ここでは,学術文献のターゲットデータセットを構築的に生成するための,機械学習に基づく新しいツールを紹介する。
論文 参考訳(メタデータ) (2023-09-19T17:18:36Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including
Structured Full-Text and Citation Network [0.0]
我々は、unarXiveというデータセットの新バージョンを提案する。
得られたデータセットは、複数の分野にまたがる1.9Mの出版物と32年からなる。
データセットに加えて、引用レコメンデーションとIMRaD分類のための準備の整ったトレーニング/テストデータを提供する。
論文 参考訳(メタデータ) (2023-03-27T07:40:59Z) - The Semantic Scholar Open Data Platform [79.4493235243312]
セマンティック・スカラー(Semantic Scholar、S2)は、学術文献の発見と理解を支援することを目的としたオープンデータプラットフォームおよびウェブサイトである。
我々は、学術的なPDFコンテンツ抽出と知識グラフの自動構築のための最先端技術を用いて、パブリックおよびプロプライエタリなデータソースを組み合わせる。
このグラフには、構造解析されたテキスト、自然言語要約、ベクトル埋め込みなどの高度な意味的特徴が含まれている。
論文 参考訳(メタデータ) (2023-01-24T17:13:08Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - A Survey of Historical Document Image Datasets [2.8707038627097226]
本稿では,文書画像解析のための画像データセットの体系的な文献レビューを行う。
手書きの写本や初期の版画などの史料に焦点が当てられている。
歴史的文書分析のための適切なデータセットを見つけることは、異なる機械学習アルゴリズムを用いた研究を促進するための重要な前提条件である。
論文 参考訳(メタデータ) (2022-03-16T09:56:48Z) - Data-to-Value: An Evaluation-First Methodology for Natural Language
Projects [3.9378507882929554]
Data to Value"(D2V)は、ビッグデータテキスト分析プロジェクトのための新しい方法論である。
ビッグデータテキスト分析プロジェクトチームとトピック間の切断を避けるため、質問の詳細なカタログでガイドされている。
論文 参考訳(メタデータ) (2022-01-19T17:04:52Z) - Scaling Systematic Literature Reviews with Machine Learning Pipelines [57.82662094602138]
体系的なレビューは、科学的文書からデータを抽出する。
これらの側面をそれぞれ自動化するパイプラインを構築し、多くの人間時間対システム品質トレードオフを実験します。
人間の専門的アノテーションの2週間だけで、パイプラインシステム全体の驚くほどの精度と一般性が得られることが分かりました。
論文 参考訳(メタデータ) (2020-10-09T16:19:42Z) - Partially-Aligned Data-to-Text Generation with Distant Supervision [69.15410325679635]
我々はPADTG(Partially-Aligned Data-to-Text Generation)と呼ばれる新しい生成タスクを提案する。
自動的にアノテートされたデータをトレーニングに利用し、アプリケーションドメインを大幅に拡張するため、より実用的です。
我々のフレームワークは、全てのベースラインモデルより優れており、部分整合データの利用の可能性を検証する。
論文 参考訳(メタデータ) (2020-10-03T03:18:52Z) - Machine Identification of High Impact Research through Text and Image
Analysis [0.4737991126491218]
本稿では,引用の可能性が低い論文から高い論文を自動的に分離するシステムを提案する。
本システムでは,文書全体の外観を推測する視覚的分類器と,コンテンツインフォームド決定のためのテキスト分類器の両方を用いる。
論文 参考訳(メタデータ) (2020-05-20T19:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。