GraphConfRec: A Graph Neural Network-Based Conference Recommender System
- URL: http://arxiv.org/abs/2106.12340v1
- Date: Wed, 23 Jun 2021 12:10:40 GMT
- Title: GraphConfRec: A Graph Neural Network-Based Conference Recommender System
- Authors: Andreea Iana, Heiko Paulheim
- Abstract summary: We propose GraphConfRec, a conference recommender system which combines SciGraph and graph neural networks.
It infers suggestions based not only on title and abstract, but also on co-authorship and citation relationships.
It achieves a recall@10 of up to 0.580 and a MAP of up to 0.336 with a graph attention network-based recommendation model.
- Score: 2.66512000865131
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's academic publishing model, especially in Computer Science,
conferences commonly constitute the main platforms for releasing the latest
peer-reviewed advancements in their respective fields. However, choosing a
suitable academic venue for publishing one's research can represent a
challenging task considering the plethora of available conferences,
particularly for those at the start of their academic careers, or for those
seeking to publish outside of their usual domain. In this paper, we propose
GraphConfRec, a conference recommender system which combines SciGraph and graph
neural networks, to infer suggestions based not only on title and abstract, but
also on co-authorship and citation relationships. GraphConfRec achieves a
recall@10 of up to 0.580 and a MAP of up to 0.336 with a graph attention
network-based recommendation model. A user study with 25 subjects supports the
positive results.
Related papers
- PageRank Bandits for Link Prediction [72.61386754332776]
Link prediction is a critical problem in graph learning with broad applications such as recommender systems and knowledge graph completion.
This paper reformulates link prediction as a sequential decision-making process, where each link prediction interaction occurs sequentially.
We propose a novel fusion algorithm, PRB (PageRank Bandits), which is the first to combine contextual bandits with PageRank for collaborative exploitation and exploration.
arXiv Detail & Related papers (2024-11-03T02:39:28Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
We propose graph domain adaptation as an effective knowledge-transfer paradigm across graphs.
GDA introduces a bunch of task-related graphs as source graphs and adapts the knowledge learnt from source graphs to the target graphs.
We outline the research status and challenges, propose a taxonomy, introduce the details of representative works, and discuss the prospects.
arXiv Detail & Related papers (2024-02-01T02:44:32Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
We propose a general learnable graph matching method to address these issues.
Our method achieves state-of-the-art performance on several MOT datasets.
For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet.
arXiv Detail & Related papers (2023-03-27T17:39:00Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - PubGraph: A Large-Scale Scientific Knowledge Graph [11.240833731512609]
PubGraph is a new resource for studying scientific progress that takes the form of a large-scale knowledge graph.
PubGraph is comprehensive and unifies data from various sources, including Wikidata, OpenAlex, and Semantic Scholar.
We create several large-scale benchmarks extracted from PubGraph for the core task of knowledge graph completion.
arXiv Detail & Related papers (2023-02-04T20:03:55Z) - Pre-training Graph Neural Network for Cross Domain Recommendation [58.057687253631826]
A recommender system predicts users' potential interests in items, where the core is to learn user/item embeddings.
Inspired by the contemporary arts in pre-training from graph representation learning, we propose a pre-training and fine-tuning diagram for cross-domain recommendation.
We devise a novel Pre-training Graph Neural Network for Cross-Domain Recommendation (PCRec), which adopts the contrastive self-supervised pre-training of a graph encoder.
arXiv Detail & Related papers (2021-11-16T07:34:42Z) - FedGraph: Federated Graph Learning with Intelligent Sampling [7.798227884125872]
Federated learning has attracted much research attention due to its privacy protection in distributed machine learning.
Existing work of federated learning mainly focuses on Convolutional Neural Network (CNN), which cannot efficiently handle graph data that are popular in many applications.
In this paper, we propose FedGraph for federated graph learning among multiple computing clients, each of which holds a subgraph.
arXiv Detail & Related papers (2021-11-02T04:58:03Z) - Structured Citation Trend Prediction Using Graph Neural Networks [6.325999141414098]
We present a GNN-based architecture that predicts the top set of papers at the time of publication.
For experiments, we curate a set of academic citation graphs for a variety of conferences and show that the proposed model outperforms other classic machine learning models in terms of the F1-score.
arXiv Detail & Related papers (2021-04-06T14:58:29Z) - Benchmarking Graph Neural Networks [75.42159546060509]
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs.
For any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress.
GitHub repository has reached 1,800 stars and 339 forks, which demonstrates the utility of the proposed open-source framework.
arXiv Detail & Related papers (2020-03-02T15:58:46Z) - A Correspondence Analysis Framework for Author-Conference
Recommendations [2.1055643409860743]
We use Correspondence Analysis (CA) to derive appropriate relationships between the entities in question, such as conferences and papers.
Our models show promising results when compared with existing methods such as content-based filtering, collaborative filtering and hybrid filtering.
arXiv Detail & Related papers (2020-01-08T18:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.