AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural
Networks
- URL: http://arxiv.org/abs/2106.12379v1
- Date: Wed, 23 Jun 2021 13:23:00 GMT
- Title: AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural
Networks
- Authors: Alexandra Peste, Eugenia Iofinova, Adrian Vladu, Dan Alistarh
- Abstract summary: We present a general approach called Alternating Compressed/DeCompressed (AC/DC) training of deep neural networks (DNNs)
AC/DC outperforms existing sparse training methods in accuracy at similar computational budgets.
An important property of AC/DC is that it allows co-training of dense and sparse models, yielding accurate sparse-dense model pairs at the end of the training process.
- Score: 78.62086125399831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing computational requirements of deep neural networks (DNNs) have
led to significant interest in obtaining DNN models that are sparse, yet
accurate. Recent work has investigated the even harder case of sparse training,
where the DNN weights are, for as much as possible, already sparse to reduce
computational costs during training.
Existing sparse training methods are mainly empirical and often have lower
accuracy relative to the dense baseline. In this paper, we present a general
approach called Alternating Compressed/DeCompressed (AC/DC) training of DNNs,
demonstrate convergence for a variant of the algorithm, and show that AC/DC
outperforms existing sparse training methods in accuracy at similar
computational budgets; at high sparsity levels, AC/DC even outperforms existing
methods that rely on accurate pre-trained dense models. An important property
of AC/DC is that it allows co-training of dense and sparse models, yielding
accurate sparse-dense model pairs at the end of the training process. This is
useful in practice, where compressed variants may be desirable for deployment
in resource-constrained settings without re-doing the entire training flow, and
also provides us with insights into the accuracy gap between dense and
compressed models.
Related papers
- A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
Split computing has emerged as a recent paradigm for implementation of DNN-based AI workloads.
We present an approach that addresses the challenge of optimizing the rate-accuracy-complexity trade-off.
Our approach is remarkably lightweight, both during training and inference, highly effective and achieves excellent rate-distortion performance.
arXiv Detail & Related papers (2022-08-24T15:02:11Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
We propose a method for training a "compressible subspace" of neural networks that contains a fine-grained spectrum of models.
We present results for achieving arbitrarily fine-grained accuracy-efficiency trade-offs at inference time for structured and unstructured sparsity.
Our algorithm extends to quantization at variable bit widths, achieving accuracy on par with individually trained networks.
arXiv Detail & Related papers (2021-10-08T17:03:34Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - FracTrain: Fractionally Squeezing Bit Savings Both Temporally and
Spatially for Efficient DNN Training [81.85361544720885]
We propose FracTrain that integrates progressive fractional quantization which gradually increases the precision of activations, weights, and gradients.
FracTrain reduces computational cost and hardware-quantified energy/latency of DNN training while achieving a comparable or better (-0.12%+1.87%) accuracy.
arXiv Detail & Related papers (2020-12-24T05:24:10Z) - Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network
Training [0.5219568203653523]
We develop a sparse DNN training accelerator that produces pruned models with the same accuracy as dense models without first training, then pruning, and finally retraining, a dense model.
Compared to training the equivalent unpruned models using a state-of-the-art DNN accelerator without sparse training support, Procrustes consumes up to 3.26$times$ less energy and offers up to 4$times$ speedup across a range of models, while pruning weights by an order of magnitude and maintaining unpruned accuracy.
arXiv Detail & Related papers (2020-09-23T07:39:55Z) - Training Sparse Neural Networks using Compressed Sensing [13.84396596420605]
We develop and test a novel method based on compressed sensing which combines the pruning and training into a single step.
Specifically, we utilize an adaptively weighted $ell1$ penalty on the weights during training, which we combine with a generalization of the regularized dual averaging (RDA) algorithm in order to train sparse neural networks.
arXiv Detail & Related papers (2020-08-21T19:35:54Z) - Learning Low-rank Deep Neural Networks via Singular Vector Orthogonality
Regularization and Singular Value Sparsification [53.50708351813565]
We propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step.
We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy.
arXiv Detail & Related papers (2020-04-20T02:40:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.