Training Sparse Neural Networks using Compressed Sensing
- URL: http://arxiv.org/abs/2008.09661v2
- Date: Wed, 7 Apr 2021 04:14:08 GMT
- Title: Training Sparse Neural Networks using Compressed Sensing
- Authors: Jonathan W. Siegel, Jianhong Chen, Pengchuan Zhang, Jinchao Xu
- Abstract summary: We develop and test a novel method based on compressed sensing which combines the pruning and training into a single step.
Specifically, we utilize an adaptively weighted $ell1$ penalty on the weights during training, which we combine with a generalization of the regularized dual averaging (RDA) algorithm in order to train sparse neural networks.
- Score: 13.84396596420605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pruning the weights of neural networks is an effective and widely-used
technique for reducing model size and inference complexity. We develop and test
a novel method based on compressed sensing which combines the pruning and
training into a single step. Specifically, we utilize an adaptively weighted
$\ell^1$ penalty on the weights during training, which we combine with a
generalization of the regularized dual averaging (RDA) algorithm in order to
train sparse neural networks. The adaptive weighting we introduce corresponds
to a novel regularizer based on the logarithm of the absolute value of the
weights. We perform a series of ablation studies demonstrating the improvement
provided by the adaptive weighting and generalized RDA algorithm. Furthermore,
numerical experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets
demonstrate that our method 1) trains sparser, more accurate networks than
existing state-of-the-art methods; 2) can be used to train sparse networks from
scratch, i.e. from a random initialization, as opposed to initializing with a
well-trained base model; 3) acts as an effective regularizer, improving
generalization accuracy.
Related papers
- Weight Compander: A Simple Weight Reparameterization for Regularization [5.744133015573047]
We introduce weight compander, a novel effective method to improve generalization of deep neural networks.
We show experimentally that using weight compander in addition to standard regularization methods improves the performance of neural networks.
arXiv Detail & Related papers (2023-06-29T14:52:04Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural
Networks [78.62086125399831]
We present a general approach called Alternating Compressed/DeCompressed (AC/DC) training of deep neural networks (DNNs)
AC/DC outperforms existing sparse training methods in accuracy at similar computational budgets.
An important property of AC/DC is that it allows co-training of dense and sparse models, yielding accurate sparse-dense model pairs at the end of the training process.
arXiv Detail & Related papers (2021-06-23T13:23:00Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Neural networks with late-phase weights [66.72777753269658]
We show that the solutions found by SGD can be further improved by ensembling a subset of the weights in late stages of learning.
At the end of learning, we obtain back a single model by taking a spatial average in weight space.
arXiv Detail & Related papers (2020-07-25T13:23:37Z) - Training highly effective connectivities within neural networks with
randomly initialized, fixed weights [4.56877715768796]
We introduce a novel way of training a network by flipping the signs of the weights.
We obtain good results even with weights constant magnitude or even when weights are drawn from highly asymmetric distributions.
arXiv Detail & Related papers (2020-06-30T09:41:18Z) - Passive Batch Injection Training Technique: Boosting Network Performance
by Injecting Mini-Batches from a different Data Distribution [39.8046809855363]
This work presents a novel training technique for deep neural networks that makes use of additional data from a distribution that is different from that of the original input data.
To the best of our knowledge, this is the first work that makes use of different data distribution to aid the training of convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-06-08T08:17:32Z) - Learning Low-rank Deep Neural Networks via Singular Vector Orthogonality
Regularization and Singular Value Sparsification [53.50708351813565]
We propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step.
We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy.
arXiv Detail & Related papers (2020-04-20T02:40:43Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
We propose a hybrid method that uses both backpropagation and evolutionary strategies to train Convolutional Neural Networks.
We show that the proposed hybrid method is capable of improving upon regular training in the task of image classification.
arXiv Detail & Related papers (2020-04-15T17:52:48Z) - Distance-Based Regularisation of Deep Networks for Fine-Tuning [116.71288796019809]
We develop an algorithm that constrains a hypothesis class to a small sphere centred on the initial pre-trained weights.
Empirical evaluation shows that our algorithm works well, corroborating our theoretical results.
arXiv Detail & Related papers (2020-02-19T16:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.