From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks
- URL: http://arxiv.org/abs/2106.12484v1
- Date: Wed, 23 Jun 2021 15:55:47 GMT
- Title: From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks
- Authors: Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, Philip S. Yu
- Abstract summary: We introduce a conceptually simple yet effective model for self-supervised representation learning with graph data.
We optimize an innovative feature-level objective inspired by classical Canonical Correlation Analysis.
Our method performs competitively on seven public graph datasets.
- Score: 99.44881722969046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a conceptually simple yet effective model for self-supervised
representation learning with graph data. It follows the previous methods that
generate two views of an input graph through data augmentation. However, unlike
contrastive methods that focus on instance-level discrimination, we optimize an
innovative feature-level objective inspired by classical Canonical Correlation
Analysis. Compared with other works, our approach requires none of the
parameterized mutual information estimator, additional projector, asymmetric
structures, and most importantly, negative samples which can be costly. We show
that the new objective essentially 1) aims at discarding augmentation-variant
information by learning invariant representations, and 2) can prevent
degenerated solutions by decorrelating features in different dimensions. Our
theoretical analysis further provides an understanding for the new objective
which can be equivalently seen as an instantiation of the Information
Bottleneck Principle under the self-supervised setting. Despite its simplicity,
our method performs competitively on seven public graph datasets.
Related papers
- A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
We investigate graph representation learning approaches that enable models to generalize across graphs.
We show that using random projections to estimate multiple powers of the transition matrix allows us to build a set of isomorphism-invariant features.
The resulting features can be used to recover enough information about the local neighborhood of a node to enable inference with relevance competitive to other approaches.
arXiv Detail & Related papers (2023-02-17T14:27:00Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Instance-Level Relative Saliency Ranking with Graph Reasoning [126.09138829920627]
We present a novel unified model to segment salient instances and infer relative saliency rank order.
A novel loss function is also proposed to effectively train the saliency ranking branch.
experimental results demonstrate that our proposed model is more effective than previous methods.
arXiv Detail & Related papers (2021-07-08T13:10:42Z) - Learning an Interpretable Graph Structure in Multi-Task Learning [18.293397644865454]
We present a novel methodology to jointly perform multi-task learning and infer intrinsic relationship among tasks by an interpretable and sparse graph.
Our graph is learned simultaneously with model parameters of each task, thus it reflects the critical relationship among tasks in the specific prediction problem.
arXiv Detail & Related papers (2020-09-11T18:58:14Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.