High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy
with Cardiovascular Deep Learning
- URL: http://arxiv.org/abs/2106.12511v1
- Date: Wed, 23 Jun 2021 16:28:40 GMT
- Title: High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy
with Cardiovascular Deep Learning
- Authors: Grant Duffy, Paul P Cheng, Neal Yuan, Bryan He, Alan C. Kwan, Matthew
J. Shun-Shin, Kevin M. Alexander, Joseph Ebinger, Matthew P. Lungren, Florian
Rader, David H. Liang, Ingela Schnittger, Euan A. Ashley, James Y. Zou,
Jignesh Patel, Ronald Witteles, Susan Cheng, David Ouyang
- Abstract summary: Left ventricular hypertrophy (LVH) results from chronic remodeling caused by a broad range of systemic and cardiovascular disease.
Early detection and characterization of LVH can significantly impact patient care.
We present EchoNet-LVH - a deep learning workflow that automatically quantifies ventricular hypertrophy with precision equal to human experts.
- Score: 10.896077463926343
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Left ventricular hypertrophy (LVH) results from chronic remodeling caused by
a broad range of systemic and cardiovascular disease including hypertension,
aortic stenosis, hypertrophic cardiomyopathy, and cardiac amyloidosis. Early
detection and characterization of LVH can significantly impact patient care but
is limited by under-recognition of hypertrophy, measurement error and
variability, and difficulty differentiating etiologies of LVH. To overcome this
challenge, we present EchoNet-LVH - a deep learning workflow that automatically
quantifies ventricular hypertrophy with precision equal to human experts and
predicts etiology of LVH. Trained on 28,201 echocardiogram videos, our model
accurately measures intraventricular wall thickness (mean absolute error [MAE]
1.4mm, 95% CI 1.2-1.5mm), left ventricular diameter (MAE 2.4mm, 95% CI
2.2-2.6mm), and posterior wall thickness (MAE 1.2mm, 95% CI 1.1-1.3mm) and
classifies cardiac amyloidosis (area under the curve of 0.83) and hypertrophic
cardiomyopathy (AUC 0.98) from other etiologies of LVH. In external datasets
from independent domestic and international healthcare systems, EchoNet-LVH
accurately quantified ventricular parameters (R2 of 0.96 and 0.90 respectively)
and detected cardiac amyloidosis (AUC 0.79) and hypertrophic cardiomyopathy
(AUC 0.89) on the domestic external validation site. Leveraging measurements
across multiple heart beats, our model can more accurately identify subtle
changes in LV geometry and its causal etiologies. Compared to human experts,
EchoNet-LVH is fully automated, allowing for reproducible, precise
measurements, and lays the foundation for precision diagnosis of cardiac
hypertrophy. As a resource to promote further innovation, we also make publicly
available a large dataset of 23,212 annotated echocardiogram videos.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - A Deep Learning-Driven Pipeline for Differentiating Hypertrophic Cardiomyopathy from Cardiac Amyloidosis Using 2D Multi-View Echocardiography [10.098930200447583]
Hypertrophic cardiomyopathy (HCM) and cardiac amyloidosis (CA) are both heart conditions that can progress to heart failure if untreated.
This paper introduces a novel multi-view deep learning approach that utilizes 2D echocardiography for differentiating between HCM and CA.
arXiv Detail & Related papers (2024-04-25T11:27:58Z) - Development of Automated Neural Network Prediction for Echocardiographic Left ventricular Ejection Fraction [36.58987036154144]
This paper proposes a new pipeline method based on deep neural networks and ensemble learning to quantify left ventricular ejection fraction (LVEF)
The method was developed and validated in an open-source dataset containing 10,030 echocardiograms.
This study demonstrates that an automated neural network-based calculation of LVEF is comparable to expert clinicians performing frame-by-frame manual evaluation of cardiac systolic function.
arXiv Detail & Related papers (2024-03-18T18:09:22Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - A Novel Deep Learning Technique for Morphology Preserved Fetal ECG
Extraction from Mother ECG using 1D-CycleGAN [3.4162369786064497]
A non-invasive fetal electrocardiogram (fECG) can easily detect abnormalities in the developing heart.
The low amplitude of the fECG, systematic and ambient noises, typical signal extraction methods are unable to produce satisfactory fECG.
Our approach, which is based on 1D CycleGAN, can reconstruct the fECG signal from the mECG signal.
The accuracy of our solution for fetal heart rate and R-R interval length is comparable to existing state-of-the-art techniques.
arXiv Detail & Related papers (2023-09-25T19:38:51Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Predicting post-operative right ventricular failure using video-based
deep learning [9.884447146588542]
We develop a video AI system trained to predict post-operative right ventricular failure (RV failure) using the full density of information from pre-operative echocardiography scans.
We achieve an temporal acuity of 0.729, specificity of 52% at 80% sensitivity and sensitivity at 80% specificity. Furthermore, we show that our ML system significantly outperforms a team of human experts tasked with predicting RV failure on independent clinical evaluation.
arXiv Detail & Related papers (2021-02-28T00:58:53Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.