Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction
- URL: http://arxiv.org/abs/2410.14423v1
- Date: Fri, 18 Oct 2024 12:37:51 GMT
- Title: Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction
- Authors: Cynthia Maldonado-Garcia, Arezoo Zakeri, Alejandro F Frangi, Nishant Ravikumar,
- Abstract summary: Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
- Score: 47.7045293755736
- License:
- Abstract: Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life. This study demonstrates the potential of retinal optical coherence tomography (OCT) imaging combined with fundus photographs for identifying future adverse cardiac events. We used data from 977 patients who experienced CVD within a 5-year interval post-image acquisition, alongside 1,877 control participants without CVD, totaling 2,854 subjects. We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not. Our model, trained on both imaging modalities, achieved promising results (AUROC 0.78 +/- 0.02, accuracy 0.68 +/- 0.002, precision 0.74 +/- 0.02, sensitivity 0.73 +/- 0.02, and specificity 0.68 +/- 0.01), demonstrating its efficacy in identifying patients at risk of future CVD events based on their retinal images. This study highlights the potential of retinal OCT imaging and fundus photographs as cost-effective, non-invasive alternatives for predicting cardiovascular disease risk. The widespread availability of these imaging techniques in optometry practices and hospitals further enhances their potential for large-scale CVD risk screening. Our findings contribute to the development of standardized, accessible methods for early CVD risk identification, potentially improving preventive care strategies and patient outcomes.
Related papers
- A Joint Representation Using Continuous and Discrete Features for Cardiovascular Diseases Risk Prediction on Chest CT Scans [12.652540031719571]
We propose a novel joint representation that integrates discrete quantitative biomarkers and continuous deep features extracted from chest CT scans.
Our method substantially improves CVD risk predictive performance and offers individual contribution analysis of each biomarker.
arXiv Detail & Related papers (2024-10-24T10:06:45Z) - Improved Esophageal Varices Assessment from Non-Contrast CT Scans [15.648325577912608]
Esophageal varices (EV) is a serious health concern resulting from portal hypertension.
Despite non-contrast computed tomography (NC-CT) imaging being a less expensive and non-invasive imaging modality, it has yet to gain full acceptance as a primary clinical diagnostic tool for EV evaluation.
We present the Multi-Organ-cOhesion-Network (MOON), a novel framework enhancing the analysis of critical organ features in NC-CT scans for effective assessment of EV.
arXiv Detail & Related papers (2024-07-18T06:49:10Z) - Predicting risk of cardiovascular disease using retinal OCT imaging [40.71667870702634]
We investigated the potential of optical coherence tomography as an additional imaging technique to predict future cardiovascular disease (CVD)
We utilised a self-supervised deep learning approach based on Variational Autoencoders (VAE) to learn low-dimensional representations of high-dimensional 3D OCT images.
The choroidal layer visible in OCT images was identified as an important predictor of future CVD events using a novel approach to model explanability.
arXiv Detail & Related papers (2024-03-26T14:42:46Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
arXiv Detail & Related papers (2022-07-23T19:17:26Z) - Replacing the Framingham-based equation for prediction of cardiovascular
disease risk and adverse outcome by using artificial intelligence and retinal
imaging [2.3972862241374444]
We used 165,907 retinal images from a database of 47,236 patient visits.
Risk score based on Framingham equations was calculated. The real CVD event rate was also determined for the individuals and overall population.
Compared to Framingham-based score, ORAiCLE was up to 12% more accurate in prediciting cardiovascular event in he next 5-years, especially for the highest risk group of people.
arXiv Detail & Related papers (2022-07-17T09:39:38Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Cervical Optical Coherence Tomography Image Classification Based on
Contrastive Self-Supervised Texture Learning [2.674926127069043]
This study aims to develop a computer-aided diagnosis (CADx) approach to classifying in-vivo cervical OCT images based on self-supervised learning.
Besides high-level semantic features extracted by a convolutional neural network (CNN), the proposed CADx approach leverages unlabeled cervical OCT images' texture features learned by contrastive texture learning.
arXiv Detail & Related papers (2021-08-11T07:52:59Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.