論文の概要: ESAI: Efficient Split Artificial Intelligence via Early Exiting Using
Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2106.12549v1
- Date: Mon, 21 Jun 2021 04:47:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-25 22:56:24.489712
- Title: ESAI: Efficient Split Artificial Intelligence via Early Exiting Using
Neural Architecture Search
- Title(参考訳): ESAI:ニューラルアーキテクチャサーチを用いた早期終了による効率的な分割人工知能
- Authors: Behnam Zeinali, Di Zhuang, J. Morris Chang
- Abstract要約: ディープニューラルネットワークは、多くのコンピュータビジョン関連タスクにおいて、従来の機械学習アルゴリズムよりも優れています。
大部分のデバイスは、優れたディープラーニングモデルがサーバー上のデータを解析する責任を負う、クラウドコンピューティングの方法論を活用しています。
本稿では、クラウドとオンデバイスモデルの両方を活用可能な、IoTデバイスにデプロイするための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.316693022958222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep neural networks have been outperforming conventional machine
learning algorithms in many computer vision-related tasks. However, it is not
computationally acceptable to implement these models on mobile and IoT devices
and the majority of devices are harnessing the cloud computing methodology in
which outstanding deep learning models are responsible for analyzing the data
on the server. This can bring the communication cost for the devices and make
the whole system useless in those times where the communication is not
available. In this paper, a new framework for deploying on IoT devices has been
proposed which can take advantage of both the cloud and the on-device models by
extracting the meta-information from each sample's classification result and
evaluating the classification's performance for the necessity of sending the
sample to the server. Experimental results show that only 40 percent of the
test data should be sent to the server using this technique and the overall
accuracy of the framework is 92 percent which improves the accuracy of both
client and server models.
- Abstract(参考訳): 近年,多くのコンピュータビジョン関連タスクにおいて,ディープニューラルネットワークが従来の機械学習アルゴリズムを上回っている。
しかし、これらのモデルをモバイルやIoTデバイス上で実装することは計算学的に受け入れられず、大部分のデバイスは、優れたディープラーニングモデルがサーバー上のデータを解析する責任を負うクラウドコンピューティングの方法論を活用している。
これにより、デバイス間の通信コストが増大し、通信ができない場合にシステム全体が役に立たないようになる。
本稿では、各サンプルの分類結果からメタ情報を取り出し、サンプルをサーバに送信する必要のある分類性能を評価することにより、クラウドとオンデバイスモデルの両方を活用可能な、IoTデバイスにデプロイするための新しいフレームワークを提案する。
実験の結果,テストデータの40%がサーバに送信されるべきであり,フレームワーク全体の精度は92%であり,クライアントモデルとサーバモデルの双方の精度が向上した。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Knowledge Transfer For On-Device Speech Emotion Recognition with Neural
Structured Learning [19.220263739291685]
音声感情認識(SER)は、ヒューマン・コンピュータ・インタラクション(HCI)において人気のある研究トピックである。
合成グラフ構築によるニューラル構造化学習(NSL)フレームワークを提案する。
実験の結果,音声サンプルとグラフを用いた軽量SERモデルの訓練は,小さなSERモデルを生成するだけでなく,モデル性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-10-26T18:38:42Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - Optimising Communication Overhead in Federated Learning Using NSGA-II [6.635754265968436]
本研究の目的は、(I)多目的問題としてモデル化し、(II)多目的最適化アルゴリズム(NSGA-II)を適用して、連合学習における通信オーバーヘッドを最適化することである。
実験の結果,提案手法は,100%通信を使用するFedAvgアルゴリズムと同等の精度で通信を99%削減できることがわかった。
論文 参考訳(メタデータ) (2022-04-01T18:06:20Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Cost-effective Machine Learning Inference Offload for Edge Computing [0.3149883354098941]
本稿では,インストール・ベース・オンプレミス(edge)計算資源を活用した新しいオフロード機構を提案する。
提案するメカニズムにより、エッジデバイスは、リモートクラウドを使用する代わりに、重い計算集約的なワークロードをエッジノードにオフロードすることができる。
論文 参考訳(メタデータ) (2020-12-07T21:11:02Z) - The Case for Retraining of ML Models for IoT Device Identification at
the Edge [0.026215338446228163]
ネットワークのエッジで利用可能なリソースを用いて、ネットワークの振る舞いに基づいてIoTデバイスを識別する方法を示す。
エッジにおいて、デバイス識別と分類をそれぞれ80%以上と90%以上精度で達成することができる。
論文 参考訳(メタデータ) (2020-11-17T13:01:04Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Fast-Convergent Federated Learning [82.32029953209542]
フェデレーション学習は、モバイルデバイスの現代的なネットワークを介して機械学習タスクを分散するための、有望なソリューションである。
本稿では,FOLBと呼ばれる高速収束型フェデレーション学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-26T14:37:51Z) - Prune2Edge: A Multi-Phase Pruning Pipelines to Deep Ensemble Learning in
IIoT [0.0]
IIoTデバイス上での学習をアンサンブルするためのエッジベースのマルチフェーズ・プルーニングパイプラインを提案する。
第1フェーズでは、様々なプルーンドモデルのアンサンブルを生成し、次いで整数量子化を適用し、次にクラスタリングに基づく手法を用いて生成されたアンサンブルをプルークする。
提案手法は,ベースラインモデルの予測可能性レベルより優れていた。
論文 参考訳(メタデータ) (2020-04-09T17:44:34Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。