Correlation in Catalysts Enables Arbitrary Manipulation of Quantum
Coherence
- URL: http://arxiv.org/abs/2106.12592v3
- Date: Tue, 14 Jun 2022 04:15:15 GMT
- Title: Correlation in Catalysts Enables Arbitrary Manipulation of Quantum
Coherence
- Authors: Ryuji Takagi and Naoto Shiraishi
- Abstract summary: We show that allowing correlation among multiple catalysts can offer arbitrary power in the manipulation of quantum coherence.
This presents a new type of embezzlement-like phenomenon, in which the resource embezzlement is attributed to the correlation generated among multiple catalysts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum resource manipulation may include an ancillary state called a
catalyst, which aids the transformation while restoring its original form at
the end, and characterizing the enhancement enabled by catalysts is essential
to reveal the ultimate manipulability of the precious resource quantity of
interest. Here, we show that allowing correlation among multiple catalysts can
offer arbitrary power in the manipulation of quantum coherence. We prove that
any state transformation can be accomplished with an arbitrarily small error by
covariant operations with catalysts that may create a correlation within them
while keeping their marginal states intact. This presents a new type of
embezzlement-like phenomenon, in which the resource embezzlement is attributed
to the correlation generated among multiple catalysts. We extend our analysis
to general resource theories and provide conditions for feasible
transformations assisted by catalysts that involve correlation, putting a
severe restriction on other quantum resources for showing this anomalous
enhancement, as well as characterizing achievable transformations in relation
to their asymptotic state transformations. Our results provide not only a
general overview of the power of correlation in catalysts but also a step
toward the complete characterization of the resource transformability in
quantum thermodynamics with correlated catalysts.
Related papers
- Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - Finite-size catalysis in quantum resource theories [1.1510009152620668]
Quantum, the ability to enable previously impossible transformations by using auxiliary systems without degrading them, has emerged as a powerful tool in various resource theories.
We show how one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
Notably, we discover a fascinating phenomenon of catalytic resonance: tailoring the catalysts's state, one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
arXiv Detail & Related papers (2024-05-14T19:08:55Z) - Demonstration of energy extraction gain from non-classical correlations [62.615368802619116]
We show that entanglement governs the amount of extractable energy in a controllable setting.
By quantifying both the concurrence of the two-qubit resource state and the energy extraction gain from applying the feedback policy, we corroborate the connection between information and energy.
arXiv Detail & Related papers (2024-04-23T08:44:07Z) - Catalytic transformations for thermal operations [0.0]
This work focuses on transformations between energy-incoherent states under the most general energy-conserving interactions among the system, the catalyst, and a thermal environment.
The sole constraint is that the catalyst must return unperturbed and uncorrelated with the other subsystems.
arXiv Detail & Related papers (2024-03-07T19:00:31Z) - No-go theorem for entanglement distillation using catalysis [49.24817625059456]
We show that catalytic transformations can never allow for the distillation of entanglement from a bound entangled state.
This precludes the possibility that entanglement theoryally reversible based operations under even permissive choices.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
Graph neural networks (GNNs) have drawn more and more attention from material scientists.
We develop a multi-task (MT) architecture based on DimeNet++ and mixture density networks to improve the performance of such task.
arXiv Detail & Related papers (2022-09-15T13:52:15Z) - Fundamental Limits on Correlated Catalytic State Transformations [15.609988622100532]
We show that a small residual correlation between catalyst and target state implies that the catalyst needs to be highly resourceful.
In addition, we establish that in imperfect a small error generally implies a highly resourceful catalyst.
arXiv Detail & Related papers (2021-11-26T08:34:59Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Amplifying asymmetry with correlated catalysts [15.457543251048637]
A correlated catalyst is a finite-dimensional auxiliary, which exactly preserves its reduced state while allowed to become correlated to the quantum system.
We show that the power of a catalyst increases with its dimension, and further, with a large enough catalyst, a qubit state with arbitrarily small amount of asymmetry can be converted to any mixed qubit state.
Our results may also apply to the constraints on coherence evolution in quantum thermodynamics, and to the distribution of timing information between quantum clocks.
arXiv Detail & Related papers (2020-07-13T08:52:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.