Catalytic transformations for thermal operations
- URL: http://arxiv.org/abs/2403.04845v2
- Date: Tue, 27 Aug 2024 05:58:50 GMT
- Title: Catalytic transformations for thermal operations
- Authors: Jakub Czartowski, A. de Oliveira Junior,
- Abstract summary: This work focuses on transformations between energy-incoherent states under the most general energy-conserving interactions among the system, the catalyst, and a thermal environment.
The sole constraint is that the catalyst must return unperturbed and uncorrelated with the other subsystems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What are the fundamental limits and advantages of using a catalyst to aid thermodynamic transformations between quantum systems? In this work, we answer this question by focusing on transformations between energy-incoherent states under the most general energy-conserving interactions among the system, the catalyst, and a thermal environment. The sole constraint is that the catalyst must return unperturbed and uncorrelated with the other subsystems. More precisely, we first upper bound the set of states to which a given initial state can thermodynamically evolve (the catalysable future) or from which it can evolve (the catalysable past) with the help of a strict catalyst. Secondly, we derive lower bounds on the dimensionality required for the existence of catalysts under thermal process, along with bounds on the catalyst's state preparation. Finally, we quantify the catalytic advantage in terms of the volume of the catalysable future and demonstrate its utility in an exemplary task of generating entanglement and cooling a quantum system using thermal resources.
Related papers
- Finite-size catalysis in quantum resource theories [1.1510009152620668]
Quantum, the ability to enable previously impossible transformations by using auxiliary systems without degrading them, has emerged as a powerful tool in various resource theories.
We show how one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
Notably, we discover a fascinating phenomenon of catalytic resonance: tailoring the catalysts's state, one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
arXiv Detail & Related papers (2024-05-14T19:08:55Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Coherence manipulation in asymmetry and thermodynamics [44.99833362998488]
In the classical regime, thermodynamic state transformations are governed by the free energy.
In the quantum regime, coherence and free energy are two independent resources.
We show that allowing along with a source of free energy allows us to amplify any quantum coherence present in the quantum state arbitrarily.
arXiv Detail & Related papers (2023-08-24T14:18:19Z) - No-go theorem for entanglement distillation using catalysis [49.24817625059456]
We show that catalytic transformations can never allow for the distillation of entanglement from a bound entangled state.
This precludes the possibility that entanglement theoryally reversible based operations under even permissive choices.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Catalysis in Action via Elementary Thermal Operations [0.0]
We investigate in the framework of elementary thermal operations, leveraging the distinct features of such operations to illuminate catalytic dynamics.
We establish new technical tools that enhance the computability of state transition rules for elementary thermal operations.
arXiv Detail & Related papers (2022-09-30T03:59:36Z) - Catalytic Gaussian thermal operations [0.26249027950824505]
We study the problem of state transformations in the framework of Gaussian thermal resource theory in the presence of catalysts.
We show that strong catalysts are useless for the single mode case, in that they do not expand the set of states reachable from a given initial state.
We derive necessary conditions for transformations holding for any number of modes, for strong catalysts and approximate transformations, and for weak catalysts with and without a thermal bath.
arXiv Detail & Related papers (2021-12-10T13:47:08Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Quantum thermodynamics of correlated-catalytic state conversion at
small-scale [0.0]
We show a complete characterization of catalytic state conversion in quantum and single-shot thermodynamics.
We show that, with the aid of storage, any quantum state can be converted into another one by paying the work cost equal to the difference of the nonequilibrium free energy.
arXiv Detail & Related papers (2020-10-21T14:35:56Z) - Catalytic transformations with finite-size environments: applications to
cooling and thermometry [0.0]
We study catalytic transformations that cannot be achieved when a system exclusively interacts with a finite environment.
We show that catalytic cooling is always possible if the dimension of the catalyst is sufficiently large.
In a multiqubit setup catalytic cooling outperforms standard (non-catalytic) cooling using higher order interactions.
arXiv Detail & Related papers (2020-10-18T19:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.