論文の概要: Long short-term relevance learning
- arxiv url: http://arxiv.org/abs/2106.12694v1
- Date: Mon, 21 Jun 2021 09:07:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-25 15:18:12.351038
- Title: Long short-term relevance learning
- Title(参考訳): 長期的関連学習
- Authors: Bram van de Weg, Lars Greve, Bojana Rosic
- Abstract要約: ネットワークアーキテクチャに効率的なスパースベイズ訓練アルゴリズムを導入する。
提案手法は,関連する神経接続を自動的に決定し,それに応じて適応する。
自己規制フレームワークは、適切なネットワークアーキテクチャとサイズに関する事前知識を必要としないことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To incorporate prior knowledge as well as measurement uncertainties in the
traditional long short term memory (LSTM) neural networks, an efficient sparse
Bayesian training algorithm is introduced to the network architecture. The
proposed scheme automatically determines relevant neural connections and adapts
accordingly, in contrast to the classical LSTM solution. Due to its
flexibility, the new LSTM scheme is less prone to overfitting, and hence can
approximate time dependent solutions by use of a smaller data set. On a
structural nonlinear finite element application we show that the
self-regulating framework does not require prior knowledge of a suitable
network architecture and size, while ensuring satisfying accuracy at reasonable
computational cost.
- Abstract(参考訳): 従来の長期記憶(LSTM)ニューラルネットワークにおいて、事前知識と測定の不確実性を組み込むため、ネットワークアーキテクチャに効率的なスパースベイズ訓練アルゴリズムを導入している。
提案手法は,従来のLSTM法とは対照的に,関連する神経接続を自動的に決定し,適応する。
その柔軟性のため、新しいLSTMスキームは過度に適合する傾向が低く、したがってより小さなデータセットを用いて時間依存の解を近似することができる。
構造非線形有限要素応用において,自己制御フレームワークは適切なネットワークアーキテクチャとサイズに関する事前知識を必要とせず,合理的な計算コストで精度を満足できることを示す。
関連論文リスト
- Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
非構造データを用いた高忠実度予測のための局所収束入力(NNLCI)を用いたニューラルネットワークを開発した。
また, NNLCI法を用いて, バンプを有するチャネル内の超音速流の可視化を行った。
論文 参考訳(メタデータ) (2023-10-23T19:03:37Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow Learning Networks (FSNet)は、オンライン時系列予測のための総合的なフレームワークである。
FSNetは、最近の変更への迅速な適応と、同様の古い知識の取得のバランスを取る。
私たちのコードは公開されます。
論文 参考訳(メタデータ) (2022-02-23T18:23:07Z) - An optimised deep spiking neural network architecture without gradients [7.183775638408429]
本稿では、局所シナプスおよびしきい値適応ルールを用いたエンドツーエンドのトレーニング可能なモジュラーイベント駆動ニューラルアーキテクチャを提案する。
このアーキテクチャは、既存のスパイキングニューラルネットワーク(SNN)アーキテクチャの高度に抽象化されたモデルを表している。
論文 参考訳(メタデータ) (2021-09-27T05:59:12Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
組込み畳み込みLSTM(E NeuralTM)と呼ばれる新しいLSTM変種を提案する。
ETMでは、異なる1次元の畳み込みの群がLSTM構造に埋め込まれている。
RUL推定のために広く用いられているいくつかのベンチマークデータセットに対する最先端のアプローチよりも,提案したEMMアプローチの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-10T08:34:20Z) - SRDCNN: Strongly Regularized Deep Convolution Neural Network
Architecture for Time-series Sensor Signal Classification Tasks [4.950427992960756]
SRDCNN: 時系列分類タスクを実行するために, SRDCNN(Strongly Regularized Deep Convolution Neural Network)をベースとしたディープアーキテクチャを提案する。
提案手法の新規性は、ネットワークウェイトが L1 と L2 のノルム法則によって正則化されることである。
論文 参考訳(メタデータ) (2020-07-14T08:42:39Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。