Recurrent Neural Network from Adder's Perspective: Carry-lookahead RNN
- URL: http://arxiv.org/abs/2106.12901v1
- Date: Tue, 22 Jun 2021 12:28:33 GMT
- Title: Recurrent Neural Network from Adder's Perspective: Carry-lookahead RNN
- Authors: Haowei Jiang, Feiwei Qin, Jin Cao, Yong Peng, Yanli Shao
- Abstract summary: We discuss the similarities between recurrent neural network (RNN) and serial adder.
Inspired by carry-lookahead adder, we introduce carry-lookahead module to RNN, which makes it possible for RNN to run in parallel.
- Score: 9.20540910698296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recurrent network architecture is a widely used model in sequence
modeling, but its serial dependency hinders the computation parallelization,
which makes the operation inefficient. The same problem was encountered in
serial adder at the early stage of digital electronics. In this paper, we
discuss the similarities between recurrent neural network (RNN) and serial
adder. Inspired by carry-lookahead adder, we introduce carry-lookahead module
to RNN, which makes it possible for RNN to run in parallel. Then, we design the
method of parallel RNN computation, and finally Carry-lookahead RNN (CL-RNN) is
proposed. CL-RNN takes advantages in parallelism and flexible receptive field.
Through a comprehensive set of tests, we verify that CL-RNN can perform better
than existing typical RNNs in sequence modeling tasks which are specially
designed for RNNs.
Related papers
- Investigating Sparsity in Recurrent Neural Networks [0.0]
This thesis focuses on investigating the effects of pruning and Sparse Recurrent Neural Networks on the performance of RNNs.
We first describe the pruning of RNNs, its impact on the performance of RNNs, and the number of training epochs required to regain accuracy after the pruning is performed.
Next, we continue with the creation and training of Sparse Recurrent Neural Networks and identify the relation between the performance and the graph properties of its underlying arbitrary structure.
arXiv Detail & Related papers (2024-07-30T07:24:58Z) - Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
We present a $SigmaDelta$-low-pass RNN (lpRNN) for mapping rate-based RNNs to spiking neural networks (SNNs)
An adaptive spiking neuron model encodes signals using $SigmaDelta$-modulation and enables precise mapping.
We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi.
arXiv Detail & Related papers (2024-07-18T14:06:07Z) - Attention as an RNN [66.5420926480473]
We show that attention can be viewed as a special Recurrent Neural Network (RNN) with the ability to compute its textitmany-to-one RNN output efficiently.
We introduce a new efficient method of computing attention's textitmany-to-many RNN output based on the parallel prefix scan algorithm.
We show Aarens achieve comparable performance to Transformers on $38$ datasets spread across four popular sequential problem settings.
arXiv Detail & Related papers (2024-05-22T19:45:01Z) - Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
We build a parallel model to illuminate and understand the internal operation of neural networks.
We show how each layer of the RNN transforms the input distributions to increase detection accuracy.
At the same time we also discover a side effect acting to limit the improvement in accuracy.
arXiv Detail & Related papers (2024-04-17T12:22:54Z) - On the Computational Complexity and Formal Hierarchy of Second Order
Recurrent Neural Networks [59.85314067235965]
We extend the theoretical foundation for the $2nd$-order recurrent network ($2nd$ RNN)
We prove there exists a class of a $2nd$ RNN that is Turing-complete with bounded time.
We also demonstrate that $2$nd order RNNs, without memory, outperform modern-day models such as vanilla RNNs and gated recurrent units in recognizing regular grammars.
arXiv Detail & Related papers (2023-09-26T06:06:47Z) - Adaptive-saturated RNN: Remember more with less instability [2.191505742658975]
This work proposes Adaptive-Saturated RNNs (asRNN), a variant that dynamically adjusts its saturation level between the two approaches.
Our experiments show encouraging results of asRNN on challenging sequence learning benchmarks compared to several strong competitors.
arXiv Detail & Related papers (2023-04-24T02:28:03Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on
Riemannian Gradient Descent With Illustrations of Speech Processing [74.31472195046099]
We exploit a low-rank tensor-train deep neural network (TT-DNN) to build an end-to-end deep learning pipeline, namely LR-TT-DNN.
A hybrid model combining LR-TT-DNN with a convolutional neural network (CNN) is set up to boost the performance.
Our empirical evidence demonstrates that the LR-TT-DNN and CNN+(LR-TT-DNN) models with fewer model parameters can outperform the TT-DNN and CNN+(LR-TT-DNN) counterparts.
arXiv Detail & Related papers (2022-03-11T15:55:34Z) - iRNN: Integer-only Recurrent Neural Network [0.8766022970635899]
We present a quantization-aware training method for obtaining a highly accurate integer-only recurrent neural network (iRNN)
Our iRNN maintains similar performance as its full-precision counterpart, their deployment on smartphones improves the runtime performance by $2times$, and reduces the model size by $4times$.
arXiv Detail & Related papers (2021-09-20T20:17:40Z) - Fusion Recurrent Neural Network [88.5550074808201]
We propose a novel, succinct and promising RNN - Fusion Recurrent Neural Network (Fusion RNN)
Fusion RNN is composed of Fusion module and Transport module every time step.
In order to evaluate Fusion RNN's sequence feature extraction capability, we choose a representative data mining task for sequence data, estimated time of arrival (ETA) and present a novel model based on Fusion RNN.
arXiv Detail & Related papers (2020-06-07T07:39:49Z) - Visual Commonsense R-CNN [102.5061122013483]
We present a novel unsupervised feature representation learning method, Visual Commonsense Region-based Convolutional Neural Network (VC R-CNN)
VC R-CNN serves as an improved visual region encoder for high-level tasks such as captioning and VQA.
We extensively apply VC R-CNN features in prevailing models of three popular tasks: Image Captioning, VQA, and VCR, and observe consistent performance boosts across them.
arXiv Detail & Related papers (2020-02-27T15:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.