Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons
- URL: http://arxiv.org/abs/2407.13534v1
- Date: Thu, 18 Jul 2024 14:06:07 GMT
- Title: Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons
- Authors: Gauthier Boeshertz, Giacomo Indiveri, Manu Nair, Alpha Renner,
- Abstract summary: We present a $SigmaDelta$-low-pass RNN (lpRNN) for mapping rate-based RNNs to spiking neural networks (SNNs)
An adaptive spiking neuron model encodes signals using $SigmaDelta$-modulation and enables precise mapping.
We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi.
- Score: 2.9410174624086025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to their parallel and sparse activity features, recurrent neural networks (RNNs) are well-suited for hardware implementation in low-power neuromorphic hardware. However, mapping rate-based RNNs to hardware-compatible spiking neural networks (SNNs) remains challenging. Here, we present a ${\Sigma}{\Delta}$-low-pass RNN (lpRNN): an RNN architecture employing an adaptive spiking neuron model that encodes signals using ${\Sigma}{\Delta}$-modulation and enables precise mapping. The ${\Sigma}{\Delta}$-neuron communicates analog values using spike timing, and the dynamics of the lpRNN are set to match typical timescales for processing natural signals, such as speech. Our approach integrates rate and temporal coding, offering a robust solution for the efficient and accurate conversion of RNNs to SNNs. We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi, achieving state-of-the-art classification results on audio benchmarks using 3-bit weights. These results call for a deeper investigation of recurrency and adaptation in event-based systems, which may lead to insights for edge computing applications where power-efficient real-time inference is required.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Obtaining Optimal Spiking Neural Network in Sequence Learning via CRNN-SNN Conversion [12.893883491781697]
Spiking neural networks (SNNs) are a promising alternative to conventional artificial neural networks (ANNs)
We design two sub-pipelines to support the end-to-end conversion of different structures in neural networks.
We show the effectiveness of our method over short and long timescales compared with the state-of-the-art learning- and conversion-based methods.
arXiv Detail & Related papers (2024-08-18T08:23:51Z) - Optimal ANN-SNN Conversion with Group Neurons [39.14228133571838]
Spiking Neural Networks (SNNs) have emerged as a promising third generation of neural networks.
The lack of effective learning algorithms remains a challenge for SNNs.
We introduce a novel type of neuron called Group Neurons (GNs)
arXiv Detail & Related papers (2024-02-29T11:41:12Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
It is hard to train biologically-inspired spiking neural networks (SNNs) than artificial neural networks (ANNs)
We show that training deep SNN models achieves the exact same performance as that of ANNs.
Our SNN accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation.
arXiv Detail & Related papers (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - A Spiking Neural Network Structure Implementing Reinforcement Learning [0.0]
In the present paper, I describe an SNN structure which, seemingly, can be used in wide range of reinforcement learning tasks.
The SNN structure considered in the paper includes spiking neurons described by a generalization of the LIFAT (leaky integrate-and-fire neuron with adaptive threshold) model.
My concept is based on very general assumptions about RL task characteristics and has no visible limitations on its applicability.
arXiv Detail & Related papers (2022-04-09T09:08:10Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
Spiking neural networks (SNNs) are biology-inspired artificial neural networks (ANNs)
We propose a novel strategic pipeline that transfers the weights to the target SNN by combining threshold balance and soft-reset mechanisms.
Our method is promising to get implanted onto embedded platforms with better support of SNNs with limited energy and memory.
arXiv Detail & Related papers (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.