論文の概要: Self-Supervised Monocular Depth Estimation of Untextured Indoor Rotated
Scenes
- arxiv url: http://arxiv.org/abs/2106.12958v2
- Date: Fri, 25 Jun 2021 12:11:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-28 13:21:53.752283
- Title: Self-Supervised Monocular Depth Estimation of Untextured Indoor Rotated
Scenes
- Title(参考訳): 室内回転シーンの自己監督による単眼深度推定
- Authors: Benjamin Keltjens and Tom van Dijk and Guido de Croon
- Abstract要約: 自己教師付き深層学習法はステレオ画像を利用して単眼深度推定の訓練を行っている。
これらの手法は, 室内環境における監視手法の性能とカメラ回転とを一致しない。
テクスチャレス領域における画像再構成誤りの曖昧さを補正する新しい不均一損失項を提案する。
- 参考スコア(独自算出の注目度): 6.316693022958222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised deep learning methods have leveraged stereo images for
training monocular depth estimation. Although these methods show strong results
on outdoor datasets such as KITTI, they do not match performance of supervised
methods on indoor environments with camera rotation. Indoor, rotated scenes are
common for less constrained applications and pose problems for two reasons:
abundance of low texture regions and increased complexity of depth cues for
images under rotation. In an effort to extend self-supervised learning to more
generalised environments we propose two additions. First, we propose a novel
Filled Disparity Loss term that corrects for ambiguity of image reconstruction
error loss in textureless regions. Specifically, we interpolate disparity in
untextured regions, using the estimated disparity from surrounding textured
areas, and use L1 loss to correct the original estimation. Our experiments show
that depth estimation is substantially improved on low-texture scenes, without
any loss on textured scenes, when compared to Monodepth by Godard et al.
Secondly, we show that training with an application's representative rotations,
in both pitch and roll, is sufficient to significantly improve performance over
the entire range of expected rotation. We demonstrate that depth estimation is
successfully generalised as performance is not lost when evaluated on test sets
with no camera rotation. Together these developments enable a broader use of
self-supervised learning of monocular depth estimation for complex
environments.
- Abstract(参考訳): 自己教師付き深層学習法では,単眼深度推定の訓練にステレオ画像を用いた。
これらの手法は、KITTIなどの屋外データセットに対して強い結果を示すが、室内環境における監視手法の性能とカメラ回転とは一致しない。
屋内で回転するシーンは、低テクスチャ領域の存在度と回転下の画像の奥行き手がかりの複雑さの増加という2つの理由から、制約の少ないアプリケーションでは一般的である。
自己教師あり学習をより一般化した環境に拡張するために、我々は2つの追加を提案する。
まず,テクスチャレス領域における画像再構成誤差損失の曖昧さを補正する新しい不均一損失項を提案する。
具体的には, 周囲のテクスチャ領域からの距離を推定し, 元の推定値の補正にL1損失を用いる。
実験の結果,ゴダードらによるモノデプスと比較すると,低テクスチャシーンでは,テクスチャシーンに損なわれることなく,奥行き推定が大幅に改善された。
第2に, アプリケーションの代表回転によるトレーニングは, ピッチとロールの両方において, 期待回転範囲全体の性能を著しく向上させるのに十分であることを示す。
カメラ回転のないテストセットで評価すると,性能が低下しないため,深さ推定がうまく一般化されることを示す。
これらの開発により、複雑な環境に対する単眼深度推定の自己教師付き学習をより広く活用することができる。
関連論文リスト
- Depth-aware Volume Attention for Texture-less Stereo Matching [67.46404479356896]
実用的な屋外シナリオにおけるテクスチャ劣化に対処する軽量なボリューム改善手法を提案する。
画像テクスチャの相対的階層を抽出し,地中深度マップによって教師される深度体積を導入する。
局所的な微細構造と文脈は、体積凝集時のあいまいさと冗長性を緩和するために強調される。
論文 参考訳(メタデータ) (2024-02-14T04:07:44Z) - Deeper into Self-Supervised Monocular Indoor Depth Estimation [7.30562653023176]
単分子配列から室内深度を自己教師付きで学習することは、研究者にとって非常に難しい。
本研究では,IndoorDepthという手法を2つのイノベーションから構成する。
NYUv2ベンチマークの実験では、私たちのIndoorDepthは従来の最先端の手法よりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2023-12-03T04:55:32Z) - GasMono: Geometry-Aided Self-Supervised Monocular Depth Estimation for
Indoor Scenes [47.76269541664071]
本稿では,フレームと低テクスチャの大きな回転に起因する屋内シーンにおける自己教師型単眼深度推定の課題に対処する。
モノクラーシーケンスから粗いカメラポーズを多視点形状で取得し,前者に対応する。
低テクスチャの効果を和らげるために、視覚変換器のグローバルな推論と過度に適合する反復的な自己蒸留機構を組み合わせる。
論文 参考訳(メタデータ) (2023-09-26T17:59:57Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
自己監督型単眼深度推定は静的な場面で顕著な結果を示した。
トレーニングネットワークのマルチビュー整合性の仮定に依存するが、動的オブジェクト領域に違反する。
単一画像の深度を事前に生成するための,外部トレーニング付き単眼深度推定モデルを提案する。
我々のモデルは、高度にダイナミックなシーンのモノクロビデオからトレーニングしても、シャープで正確な深度マップを予測できる。
論文 参考訳(メタデータ) (2022-11-07T16:17:47Z) - Towards Accurate Reconstruction of 3D Scene Shape from A Single
Monocular Image [91.71077190961688]
まず、未知のスケールまで深さを予測し、単一の単眼画像からシフトする2段階のフレームワークを提案する。
次に、3Dポイントの雲のデータを利用して、奥行きの変化とカメラの焦点距離を予測し、3Dシーンの形状を復元します。
我々は9つの未知のデータセットで深度モデルを検証し、ゼロショット評価で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-08-28T16:20:14Z) - Weakly-Supervised Monocular Depth Estimationwith Resolution-Mismatched
Data [73.9872931307401]
単眼深度推定ネットワークをトレーニングするための弱教師付きフレームワークを提案する。
提案フレームワークは, 共有重量単分子深度推定ネットワークと蒸留用深度再構成ネットワークから構成される。
実験結果から,本手法は教師なし・半教師付き学習ベース方式よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2021-09-23T18:04:12Z) - Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular
Depth Estimation in the Dark [20.66405067066299]
未ペア深度マップから分布知識を学習するために,プリエントベース正規化を導入する。
また、画像の可視性とコントラストを高めるために、マッピング一貫性画像強調モジュールを活用している。
筆者らのフレームワークは,2つの夜間データセットに対して,顕著な改善と最先端の結果を達成している。
論文 参考訳(メタデータ) (2021-08-09T06:24:35Z) - SelfDeco: Self-Supervised Monocular Depth Completion in Challenging
Indoor Environments [50.761917113239996]
自己教師付き単分子深度補完のための新しいアルゴリズムを提案する。
提案手法は,深度ラベルを含まない疎深度測定とそれに対応する単眼ビデオシーケンスのみを必要とするニューラルネットワークのトレーニングに基づく。
我々の自己監督アルゴリズムは、テクスチャのない領域、光沢のない透明な表面、非ランバートの表面、動く人々、より長く多様な深度範囲、複雑なエゴモーションによって捉えられたシーンを含む屋内環境に挑戦するために設計されている。
論文 参考訳(メタデータ) (2020-11-10T08:55:07Z) - Deep Depth Estimation from Visual-Inertial SLAM [11.814395824799988]
視覚-慣性同時局在マッピングシステム(VI-SLAM)を用いてスパース深度を計算した症例について検討した。
結果として生じる点雲は密度が低く、ノイズがあり、一様でない空間分布を持つ。
我々は、VI-SLAMから得られる重力推定値を用いて、トレーニングデータセットで一般的な向きに入力画像をワープする。
論文 参考訳(メタデータ) (2020-07-31T21:28:25Z) - Unsupervised Learning of Depth, Optical Flow and Pose with Occlusion
from 3D Geometry [29.240108776329045]
本稿では,中間フレームの画素を剛性領域,非剛性領域,隠蔽領域の3つの部分にモデル化する。
奥行きとポーズの非教師による共同トレーニングでは、隠蔽領域を明示的に区分することができる。
閉鎖領域では、深度とカメラの動きがより信頼性の高い動き推定を提供するため、光学流の教師なし学習の指導に使用できる。
論文 参考訳(メタデータ) (2020-03-02T11:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。