Stochastic Projective Splitting: Solving Saddle-Point Problems with
Multiple Regularizers
- URL: http://arxiv.org/abs/2106.13067v1
- Date: Thu, 24 Jun 2021 14:48:43 GMT
- Title: Stochastic Projective Splitting: Solving Saddle-Point Problems with
Multiple Regularizers
- Authors: Patrick R. Johnstone, Jonathan Eckstein, Thomas Flynn, Shinjae Yoo
- Abstract summary: We present a new, variant of the projective splitting (PS) family of monotone algorithms for inclusion problems.
It can solve min-max and noncooperative game formulations arising in applications such as robust ML without the convergence issues associated with gradient descent-ascent.
- Score: 4.568911586155097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new, stochastic variant of the projective splitting (PS) family
of algorithms for monotone inclusion problems. It can solve min-max and
noncooperative game formulations arising in applications such as robust ML
without the convergence issues associated with gradient descent-ascent, the
current de facto standard approach in such situations. Our proposal is the
first version of PS able to use stochastic (as opposed to deterministic)
gradient oracles. It is also the first stochastic method that can solve min-max
games while easily handling multiple constraints and nonsmooth regularizers via
projection and proximal operators. We close with numerical experiments on a
distributionally robust sparse logistic regression problem.
Related papers
- Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
We introduce a novel convex convex model for semi/library-based unmixing.
We demonstrate the efficacy of Alternating Methods of sparse unsupervised unmixing.
arXiv Detail & Related papers (2024-01-23T10:07:41Z) - Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features [65.64276393443346]
The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints.
We present two new variants of the algorithms for minimization of the finite-sum gradient.
arXiv Detail & Related papers (2023-04-23T20:05:09Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
Problems [26.24895953952318]
We develop an algorithm to solve a class of non-gence minimax problems.
They can also work with both single or two mini-batch derivatives.
arXiv Detail & Related papers (2020-06-27T03:05:18Z) - Stochastic gradient algorithms from ODE splitting perspective [0.0]
We present a different view on optimization, which goes back to the splitting schemes for approximate solutions of ODE.
In this work, we provide a connection between descent approach and gradient first-order splitting scheme for ODE.
We consider the special case of splitting, which is inspired by machine learning applications and derive a new upper bound on the global splitting error for it.
arXiv Detail & Related papers (2020-04-19T22:45:32Z) - Explicit Regularization of Stochastic Gradient Methods through Duality [9.131027490864938]
We propose randomized Dykstra-style algorithms based on randomized dual coordinate ascent.
For accelerated coordinate descent, we obtain a new algorithm that has better convergence properties than existing gradient methods in the interpolating regime.
arXiv Detail & Related papers (2020-03-30T20:44:56Z) - Stochastic Proximal Gradient Algorithm with Minibatches. Application to
Large Scale Learning Models [2.384873896423002]
We develop and analyze minibatch variants of gradient algorithm for general composite objective functions with nonsmooth components.
We provide complexity for constant and variable stepsize iteration policies obtaining that, for minibatch size $N$, after $mathcalO(frac1Nepsilon)$ $epsilon-$subity is attained in expected quadratic distance to optimal solution.
arXiv Detail & Related papers (2020-03-30T10:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.