Stochastic Smoothed Primal-Dual Algorithms for Nonconvex Optimization with Linear Inequality Constraints
- URL: http://arxiv.org/abs/2504.07607v1
- Date: Thu, 10 Apr 2025 09:59:43 GMT
- Title: Stochastic Smoothed Primal-Dual Algorithms for Nonconvex Optimization with Linear Inequality Constraints
- Authors: Ruichuan Huang, Jiawei Zhang, Ahmet Alacaoglu,
- Abstract summary: We propose smoothed primal-dual algorithms for solving nonexact optimization problems with linear inequality constraints.<n>Our algorithms are single-loop iterations based on one gradient at each sample.<n>Unlike existing methods, our algorithms are free sub, large sizes or increasing parameters and use dual variable updates to ensure feasibility.
- Score: 12.624604051853657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose smoothed primal-dual algorithms for solving stochastic and smooth nonconvex optimization problems with linear inequality constraints. Our algorithms are single-loop and only require a single stochastic gradient based on one sample at each iteration. A distinguishing feature of our algorithm is that it is based on an inexact gradient descent framework for the Moreau envelope, where the gradient of the Moreau envelope is estimated using one step of a stochastic primal-dual augmented Lagrangian method. To handle inequality constraints and stochasticity, we combine the recently established global error bounds in constrained optimization with a Moreau envelope-based analysis of stochastic proximal algorithms. For obtaining $\varepsilon$-stationary points, we establish the optimal $O(\varepsilon^{-4})$ sample complexity guarantee for our algorithms and provide extensions to stochastic linear constraints. We also show how to improve this complexity to $O(\varepsilon^{-3})$ by using variance reduction and the expected smoothness assumption. Unlike existing methods, the iterations of our algorithms are free of subproblems, large batch sizes or increasing penalty parameters and use dual variable updates to ensure feasibility.
Related papers
- Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
We propose a class of non-text and non-smooth problems with textitrank regularization to promote sparsity in optimal solution.
We show that our algorithms are able to achieve a singular convergence of $Ofrac(t2)$, which is exactly same as Nesterov's optimal convergence for first-order methods on smooth convex problems.
arXiv Detail & Related papers (2023-07-04T16:55:41Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
This work studies problems with zero-order noisy oracle information under the assumption that the objective function is highly smooth.
We consider two kinds of zero-order projected gradient descent algorithms.
arXiv Detail & Related papers (2023-06-03T17:05:13Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
We show the worst-case complexity of convergence $tildeO(t-1/4)$ and MoreautildeO(vareps-4)$ for smooth non- optimization.
We obtain first online nonnegative matrix factorization algorithms for dependent data based on projected gradient methods with adaptive step sizes and optimal convergence.
arXiv Detail & Related papers (2022-03-29T17:59:10Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
We propose a projection-free conditional gradient-type algorithm for composition optimization.
We show that the number of oracles and the linear-minimization oracle required by the proposed algorithm, are of order $mathcalO_T(epsilon-2)$ and $mathcalO_T(epsilon-3)$ respectively.
arXiv Detail & Related papers (2022-02-09T06:05:38Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - Adaptive extra-gradient methods for min-max optimization and games [35.02879452114223]
We present a new family of minmax optimization algorithms that automatically exploit the geometry of the gradient data observed at earlier iterations.
Thanks to this adaptation mechanism, the proposed method automatically detects whether the problem is smooth or not.
It converges to an $varepsilon$-optimal solution within $mathcalO (1/varepsilon)$ iterations in smooth problems, and within $mathcalO (1/varepsilon)$ iterations in non-smooth ones.
arXiv Detail & Related papers (2020-10-22T22:54:54Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.