Physics perception in sloshing scenes with guaranteed thermodynamic
consistency
- URL: http://arxiv.org/abs/2106.13301v1
- Date: Thu, 24 Jun 2021 20:13:56 GMT
- Title: Physics perception in sloshing scenes with guaranteed thermodynamic
consistency
- Authors: Beatriz Moya, Alberto Badias, David Gonzalez, Francisco Chinesta,
Elias Cueto
- Abstract summary: We propose a strategy to learn the full state of sloshing liquids from measurements of the free surface.
Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics perception very often faces the problem that only limited data or
partial measurements on the scene are available. In this work, we propose a
strategy to learn the full state of sloshing liquids from measurements of the
free surface. Our approach is based on recurrent neural networks (RNN) that
project the limited information available to a reduced-order manifold so as to
not only reconstruct the unknown information, but also to be capable of
performing fluid reasoning about future scenarios in real time. To obtain
physically consistent predictions, we train deep neural networks on the
reduced-order manifold that, through the employ of inductive biases, ensure the
fulfillment of the principles of thermodynamics. RNNs learn from history the
required hidden information to correlate the limited information with the
latent space where the simulation occurs. Finally, a decoder returns data back
to the high-dimensional manifold, so as to provide the user with insightful
information in the form of augmented reality. This algorithm is connected to a
computer vision system to test the performance of the proposed methodology with
real information, resulting in a system capable of understanding and predicting
future states of the observed fluid in real-time.
Related papers
- Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics [0.0]
We present the Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) framework, which combines graph neural networks and the State Predictive Information Bottleneck.
tested on three benchmark systems, our approach predicts essential structural, thermodynamic and kinetic information for slow processes.
The method shows promise for complex systems, enabling effective enhanced sampling without requiring pre-defined reaction coordinates or input features.
arXiv Detail & Related papers (2024-09-18T09:53:13Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Neural Incremental Data Assimilation [8.817223931520381]
We introduce a deep learning approach where the physical system is modeled as a sequence of coarse-to-fine Gaussian prior distributions parametrized by a neural network.
This allows us to define an assimilation operator, which is trained in an end-to-end fashion to minimize the reconstruction error.
We illustrate our approach on chaotic dynamical physical systems with sparse observations, and compare it to traditional variational data assimilation methods.
arXiv Detail & Related papers (2024-06-21T11:42:55Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
We introduce latent intuitive physics, a transfer learning framework for physics simulation.
It can infer hidden properties of fluids from a single 3D video and simulate the observed fluid in novel scenes.
We validate our model in three ways: (i) novel scene simulation with the learned visual-world physics, (ii) future prediction of the observed fluid dynamics, and (iii) supervised particle simulation.
arXiv Detail & Related papers (2024-06-18T16:37:44Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Physics-informed Reinforcement Learning for Perception and Reasoning
about Fluids [0.0]
We propose a physics-informed reinforcement learning strategy for fluid perception and reasoning from observations.
We develop a method for the tracking (perception) and analysis (reasoning) of any previously unseen liquid whose free surface is observed with a commodity camera.
arXiv Detail & Related papers (2022-03-11T07:01:23Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Physics-aware, deep probabilistic modeling of multiscale dynamics in the
Small Data regime [0.0]
The present paper offers a probabilistic perspective that simultaneously identifies predictive, lower-dimensional coarse-grained (CG) variables as well as their dynamics.
We make use of the expressive ability of deep neural networks in order to represent the right-hand side of the CG evolution law.
We demonstrate the efficacy of the proposed framework in a high-dimensional system of moving particles.
arXiv Detail & Related papers (2021-02-08T15:04:05Z) - Deep learning of thermodynamics-aware reduced-order models from data [0.08699280339422537]
We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system.
We then predict its time evolution using thermodynamically-consistent deep neural networks.
arXiv Detail & Related papers (2020-07-03T08:49:01Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.