ShadowNet for Data-Centric Quantum System Learning
- URL: http://arxiv.org/abs/2308.11290v1
- Date: Tue, 22 Aug 2023 09:11:53 GMT
- Title: ShadowNet for Data-Centric Quantum System Learning
- Authors: Yuxuan Du, Yibo Yang, Tongliang Liu, Zhouchen Lin, Bernard Ghanem,
Dacheng Tao
- Abstract summary: We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
- Score: 188.683909185536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the dynamics of large quantum systems is hindered by the curse
of dimensionality. Statistical learning offers new possibilities in this regime
by neural-network protocols and classical shadows, while both methods have
limitations: the former is plagued by the predictive uncertainty and the latter
lacks the generalization ability. Here we propose a data-centric learning
paradigm combining the strength of these two approaches to facilitate diverse
quantum system learning (QSL) tasks. Particularly, our paradigm utilizes
classical shadows along with other easily obtainable information of quantum
systems to create the training dataset, which is then learnt by neural networks
to unveil the underlying mapping rule of the explored QSL problem. Capitalizing
on the generalization power of neural networks, this paradigm can be trained
offline and excel at predicting previously unseen systems at the inference
stage, even with few state copies. Besides, it inherits the characteristic of
classical shadows, enabling memory-efficient storage and faithful prediction.
These features underscore the immense potential of the proposed data-centric
approach in discovering novel and large-scale quantum systems. For
concreteness, we present the instantiation of our paradigm in quantum state
tomography and direct fidelity estimation tasks and conduct numerical analysis
up to 60 qubits. Our work showcases the profound prospects of data-centric
artificial intelligence to advance QSL in a faithful and generalizable manner.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
This paper introduces a new method to transfer knowledge from classical to quantum neural networks using knowledge distillation.
We adapt classical convolutional neural network (CNN) architectures like LeNet and AlexNet to serve as teacher networks.
Quantum models achieve an average accuracy improvement of 0.80% on the MNIST dataset and 5.40% on the more complex Fashion MNIST dataset.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - On the Interpretability of Quantum Neural Networks [0.0]
Interpretability of artificial intelligence (AI) methods, particularly deep neural networks, is of great interest.
Here, we explore the interpretability of quantum neural networks using local model-agnostic interpretability measures commonly utilized for classical neural networks.
A feature of our explanations is the delineation of the region in which data samples have been given a random label, likely subjects of inherently random quantum measurements.
arXiv Detail & Related papers (2023-08-22T00:43:14Z) - Deep learning of many-body observables and quantum information scrambling [0.0]
We explore how the capacity of data-driven deep neural networks in learning the dynamics of physical observables is correlated with the scrambling of quantum information.
We train a neural network to find a mapping from the parameters of a model to the evolution of observables in random quantum circuits.
We show that a particular type of recurrent neural network is extremely powerful in generalizing its predictions within the system size and time window that it has been trained on for both, localized and scrambled regimes.
arXiv Detail & Related papers (2023-02-09T13:14:10Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Quantum Self-Supervised Learning [22.953284192004034]
We propose a hybrid quantum-classical neural network architecture for contrastive self-supervised learning.
We apply our best quantum model to classify unseen images on the ibmq_paris quantum computer.
arXiv Detail & Related papers (2021-03-26T18:00:00Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.