A hybrid model-based and learning-based approach for classification
using limited number of training samples
- URL: http://arxiv.org/abs/2106.13436v1
- Date: Fri, 25 Jun 2021 05:19:50 GMT
- Title: A hybrid model-based and learning-based approach for classification
using limited number of training samples
- Authors: Alireza Nooraiepour, Waheed U. Bajwa, Narayan B. Mandayam
- Abstract summary: In this paper, a hybrid classification method -- HyPhyLearn -- is proposed that exploits both the physics-based statistical models and the learning-based classifiers.
The proposed solution is based on the conjecture that HyPhyLearn would alleviate the challenges associated with the individual approaches of learning-based and statistical model-based classifiers.
- Score: 13.60714541247498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fundamental task of classification given a limited number of training
data samples is considered for physical systems with known parametric
statistical models. The standalone learning-based and statistical model-based
classifiers face major challenges towards the fulfillment of the classification
task using a small training set. Specifically, classifiers that solely rely on
the physics-based statistical models usually suffer from their inability to
properly tune the underlying unobservable parameters, which leads to a
mismatched representation of the system's behaviors. Learning-based
classifiers, on the other hand, typically rely on a large number of training
data from the underlying physical process, which might not be feasible in most
practical scenarios. In this paper, a hybrid classification method -- termed
HyPhyLearn -- is proposed that exploits both the physics-based statistical
models and the learning-based classifiers. The proposed solution is based on
the conjecture that HyPhyLearn would alleviate the challenges associated with
the individual approaches of learning-based and statistical model-based
classifiers by fusing their respective strengths. The proposed hybrid approach
first estimates the unobservable model parameters using the available
(suboptimal) statistical estimation procedures, and subsequently use the
physics-based statistical models to generate synthetic data. Then, the training
data samples are incorporated with the synthetic data in a learning-based
classifier that is based on domain-adversarial training of neural networks.
Specifically, in order to address the mismatch problem, the classifier learns a
mapping from the training data and the synthetic data to a common feature
space. Simultaneously, the classifier is trained to find discriminative
features within this space in order to fulfill the classification task.
Related papers
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - Class Impression for Data-free Incremental Learning [20.23329169244367]
Deep learning-based classification approaches require collecting all samples from all classes in advance and are trained offline.
This paradigm may not be practical in real-world clinical applications, where new classes are incrementally introduced through the addition of new data.
We propose a novel data-free class incremental learning framework that first synthesizes data from the model trained on previous classes to generate a ours.
arXiv Detail & Related papers (2022-06-26T06:20:17Z) - Lightweight Conditional Model Extrapolation for Streaming Data under
Class-Prior Shift [27.806085423595334]
We introduce LIMES, a new method for learning with non-stationary streaming data.
We learn a single set of model parameters from which a specific classifier for any specific data distribution is derived.
Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches.
arXiv Detail & Related papers (2022-06-10T15:19:52Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
We propose a deep invertible hybrid model which integrates discriminative and generative learning at a latent space level for semi-supervised few-shot classification.
Our main originality lies in our integration of these components at a latent space level, which is effective in preventing overfitting.
arXiv Detail & Related papers (2021-05-22T05:55:16Z) - Learning from Incomplete Features by Simultaneous Training of Neural
Networks and Sparse Coding [24.3769047873156]
This paper addresses the problem of training a classifier on a dataset with incomplete features.
We assume that different subsets of features (random or structured) are available at each data instance.
A new supervised learning method is developed to train a general classifier, using only a subset of features per sample.
arXiv Detail & Related papers (2020-11-28T02:20:39Z) - BayesFlow: Learning complex stochastic models with invertible neural
networks [3.1498833540989413]
We propose a novel method for globally amortized Bayesian inference based on invertible neural networks.
BayesFlow incorporates a summary network trained to embed the observed data into maximally informative summary statistics.
We demonstrate the utility of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive science and ecology.
arXiv Detail & Related papers (2020-03-13T13:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.