A self-regulated convolutional neural network for classifying variable stars
- URL: http://arxiv.org/abs/2505.14877v1
- Date: Tue, 20 May 2025 20:09:24 GMT
- Title: A self-regulated convolutional neural network for classifying variable stars
- Authors: Francisco Pérez-Galarce, Jorge Martínez-Palomera, Karim Pichara, Pablo Huijse, Márcio Catelan,
- Abstract summary: Machine learning models have proven effective in classifying variable stars.<n>They require high-quality, representative data and a large number of labelled samples for each star type to generalise well.<n>This challenge often leads to models learning and reinforcing biases inherent in the training data.<n>We propose a new approach to improve the reliability of classifiers in variable star classification by introducing a self-regulated training process.
- Score: 1.0485739694839669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last two decades, machine learning models have been widely applied and have proven effective in classifying variable stars, particularly with the adoption of deep learning architectures such as convolutional neural networks, recurrent neural networks, and transformer models. While these models have achieved high accuracy, they require high-quality, representative data and a large number of labelled samples for each star type to generalise well, which can be challenging in time-domain surveys. This challenge often leads to models learning and reinforcing biases inherent in the training data, an issue that is not easily detectable when validation is performed on subsamples from the same catalogue. The problem of biases in variable star data has been largely overlooked, and a definitive solution has yet to be established. In this paper, we propose a new approach to improve the reliability of classifiers in variable star classification by introducing a self-regulated training process. This process utilises synthetic samples generated by a physics-enhanced latent space variational autoencoder, incorporating six physical parameters from Gaia Data Release 3. Our method features a dynamic interaction between a classifier and a generative model, where the generative model produces ad-hoc synthetic light curves to reduce confusion during classifier training and populate underrepresented regions in the physical parameter space. Experiments conducted under various scenarios demonstrate that our self-regulated training approach outperforms traditional training methods for classifying variable stars on biased datasets, showing statistically significant improvements.
Related papers
- Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - Phantom Embeddings: Using Embedding Space for Model Regularization in
Deep Neural Networks [12.293294756969477]
The strength of machine learning models stems from their ability to learn complex function approximations from data.
The complex models tend to memorize the training data, which results in poor regularization performance on test data.
We present a novel approach to regularize the models by leveraging the information-rich latent embeddings and their high intra-class correlation.
arXiv Detail & Related papers (2023-04-14T17:15:54Z) - Variational Autoencoding Neural Operators [17.812064311297117]
Unsupervised learning with functional data is an emerging paradigm of machine learning research with applications to computer vision, climate modeling and physical systems.
We present Variational Autoencoding Neural Operators (VANO), a general strategy for making a large class of operator learning architectures act as variational autoencoders.
arXiv Detail & Related papers (2023-02-20T22:34:43Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Entropy optimized semi-supervised decomposed vector-quantized
variational autoencoder model based on transfer learning for multiclass text
classification and generation [3.9318191265352196]
We propose a semisupervised discrete latent variable model for multi-class text classification and text generation.
The proposed model employs the concept of transfer learning for training a quantized transformer model.
Experimental results indicate that the proposed model has surpassed the state-of-the-art models remarkably.
arXiv Detail & Related papers (2021-11-10T07:07:54Z) - A hybrid model-based and learning-based approach for classification
using limited number of training samples [13.60714541247498]
In this paper, a hybrid classification method -- HyPhyLearn -- is proposed that exploits both the physics-based statistical models and the learning-based classifiers.
The proposed solution is based on the conjecture that HyPhyLearn would alleviate the challenges associated with the individual approaches of learning-based and statistical model-based classifiers.
arXiv Detail & Related papers (2021-06-25T05:19:50Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.