論文の概要: A Picture May Be Worth a Hundred Words for Visual Question Answering
- arxiv url: http://arxiv.org/abs/2106.13445v1
- Date: Fri, 25 Jun 2021 06:13:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-28 21:15:24.561933
- Title: A Picture May Be Worth a Hundred Words for Visual Question Answering
- Title(参考訳): 絵は、視覚的な質問に答えるために100語分の価値があるかもしれない
- Authors: Yusuke Hirota, Noa Garcia, Mayu Otani, Chenhui Chu, Yuta Nakashima,
Ittetsu Taniguchi, Takao Onoye
- Abstract要約: 画像理解においては、簡潔だが詳細な画像表現を用いることが不可欠である。
より高速なR-CNNのような視覚モデルによって抽出された深い視覚的特徴は、複数のタスクで広く使われている。
本稿では、深い視覚的特徴の代わりに記述-探索ペアを入力とし、言語のみのトランスフォーマーモデルに入力する。
- 参考スコア(独自算出の注目度): 26.83504716672634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How far can we go with textual representations for understanding pictures? In
image understanding, it is essential to use concise but detailed image
representations. Deep visual features extracted by vision models, such as
Faster R-CNN, are prevailing used in multiple tasks, and especially in visual
question answering (VQA). However, conventional deep visual features may
struggle to convey all the details in an image as we humans do. Meanwhile, with
recent language models' progress, descriptive text may be an alternative to
this problem. This paper delves into the effectiveness of textual
representations for image understanding in the specific context of VQA. We
propose to take description-question pairs as input, instead of deep visual
features, and fed them into a language-only Transformer model, simplifying the
process and the computational cost. We also experiment with data augmentation
techniques to increase the diversity in the training set and avoid learning
statistical bias. Extensive evaluations have shown that textual representations
require only about a hundred words to compete with deep visual features on both
VQA 2.0 and VQA-CP v2.
- Abstract(参考訳): 写真を理解するためのテキスト表現はどこまでできるのか?
画像理解では、簡潔だが詳細な画像表現を使うことが不可欠である。
より高速なR-CNNのような視覚モデルによって抽出された深い視覚的特徴は、複数のタスク、特に視覚的質問応答(VQA)で広く使われている。
しかし、従来の深い視覚的特徴は、人間のように画像内のすべての詳細を伝えるのに苦労するかもしれない。
一方、最近の言語モデルの進歩により、記述テキストはこの問題の代替となるかもしれない。
本稿では,VQAの特定の文脈における画像理解のためのテキスト表現の有効性について検討する。
本稿では,記述・質問対を入力として,言語のみのトランスフォーマーモデルに導入し,プロセスと計算コストを単純化することを提案する。
また、トレーニングセットの多様性を高め、統計的バイアスの学習を避けるために、データ拡張手法も実験した。
大規模な評価では、VQA 2.0とVQA-CP v2の両方の深い視覚的特徴と競合するために、テキスト表現は100語程度しか必要としない。
関連論文リスト
- Making the V in Text-VQA Matter [1.2962828085662563]
テキストベースのVQAは,画像中のテキストを読み取って質問に答えることを目的としている。
近年の研究では、データセットの問合せ対は、画像に存在するテキストにより焦点を絞っていることが示されている。
このデータセットでトレーニングされたモデルは、視覚的コンテキストの理解の欠如による偏りのある回答を予測する。
論文 参考訳(メタデータ) (2023-08-01T05:28:13Z) - Learning the Visualness of Text Using Large Vision-Language Models [42.75864384249245]
視覚的テキストは人の心の中のイメージを誘発するが、視覚的でないテキストはそれを起こさない。
テキスト内の視覚を自動的に検出する手法により、テキスト・ツー・イメージ検索と生成モデルにより、関連する画像でテキストを拡張できる。
我々は,3,620の英語文のデータセットと,複数のアノテータによって提供されるその視覚性スコアをキュレートする。
論文 参考訳(メタデータ) (2023-05-11T17:45:16Z) - Text-Aware Dual Routing Network for Visual Question Answering [11.015339851906287]
既存のアプローチはしばしば、疑問に答えるために画像中のテキストを読み、理解する必要がある場合に失敗する。
本稿では,入力画像中のテキスト情報を理解しないVQA事例を同時に処理するテキスト認識デュアルルーティングネットワーク(TDR)を提案する。
テキスト理解を伴うブランチでは,画像中のテキストの理解を支援するために,OCR(Optical Character Recognition)機能をモデルに組み込む。
論文 参考訳(メタデータ) (2022-11-17T02:02:11Z) - TAG: Boosting Text-VQA via Text-aware Visual Question-answer Generation [55.83319599681002]
Text-VQAは、画像中のテキストの手がかりを理解する必要がある質問に答えることを目的としている。
画像のシーンコンテキストで利用可能な既存のリッチテキストを明示的に利用することにより,高品質で多様なQAペアを生成する方法を開発した。
論文 参考訳(メタデータ) (2022-08-03T02:18:09Z) - NewsStories: Illustrating articles with visual summaries [49.924916589209374]
我々は,3300万記事,2200万画像,100万ビデオを含む大規模マルチモーダルデータセットを提案する。
現状の画像テキストアライメント手法は、複数の画像を持つ長い物語に対して堅牢ではないことを示す。
本稿では,GoodNewsデータセット上で,ゼロショット画像セット検索において,これらの手法を10%向上させる直感的なベースラインを提案する。
論文 参考訳(メタデータ) (2022-07-26T17:34:11Z) - Visually-Augmented Language Modeling [137.36789885105642]
本稿では,言語モデリングのための関連画像を含むテキストトークンを視覚的に拡張する,VaLMという新しい事前学習フレームワークを提案する。
視覚的に拡張されたコンテキストでは、VaLMは視覚知識融合層を使用してマルチモーダル基底言語モデリングを可能にする。
視覚情報を必要とする多モーダル・コモンセンス推論タスクについて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2022-05-20T13:41:12Z) - Image Retrieval from Contextual Descriptions [22.084939474881796]
文脈記述による画像検索(ImageCoDe)
文脈記述に基づく10の最小限のコントラスト候補から正しい画像を取得するためのモデル。
ビデオフレームでは20.9、静的画像では59.4の精度で、人間では90.8である。
論文 参考訳(メタデータ) (2022-03-29T19:18:12Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
本稿では,シーンテキストを効果的に表現できる弱教師付き事前学習手法を提案する。
本ネットワークは,画像エンコーダと文字認識型テキストエンコーダから構成され,視覚的特徴とテキスト的特徴を抽出する。
実験により、事前訓練されたモデルは、重みを他のテキスト検出やスポッティングネットワークに転送しながら、Fスコアを+2.5%、+4.8%改善することが示された。
論文 参考訳(メタデータ) (2022-03-08T08:10:45Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
高価なフィルタリングや後処理のステップを使わずに得られる10億以上の画像アルトテキストペアのノイズの多いデータセットを活用します。
単純なデュアルエンコーダアーキテクチャは、画像とテキストペアの視覚的および言語的表現を、対照的な損失を使って整列させることを学ぶ。
コーパスのスケールはノイズを補うことができ、そのような単純な学習方式であっても最先端の表現に繋がることを示す。
論文 参考訳(メタデータ) (2021-02-11T10:08:12Z) - Multi-Modal Graph Neural Network for Joint Reasoning on Vision and Scene
Text [93.08109196909763]
我々は,新しいVQAアプローチであるMulti-Modal Graph Neural Network (MM-GNN)を提案する。
これはまず3つの部分グラフからなるグラフとして表現され、それぞれ視覚的、意味的、数値的な様相を描いている。
次に3つのアグリゲータを導入し、あるグラフから別のグラフへのメッセージ転送を誘導し、様々なモードでコンテキストを利用する。
論文 参考訳(メタデータ) (2020-03-31T05:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。