論文の概要: Fully tunable hyperfine interactions of hole spin qubits in Si and Ge
quantum dots
- arxiv url: http://arxiv.org/abs/2106.13744v1
- Date: Fri, 25 Jun 2021 16:31:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-25 13:48:16.534836
- Title: Fully tunable hyperfine interactions of hole spin qubits in Si and Ge
quantum dots
- Title(参考訳): SiおよびGe量子ドットにおけるホールスピン量子ビットの完全な可変超微細相互作用
- Authors: Stefano Bosco and Daniel Loss
- Abstract要約: Hole spin qubitsはスケーラブルな量子コンピュータのための最前線のプラットフォームである。
最先端のデバイスは、核欠陥との超微細な相互作用に起因するノイズに悩まされている。
これらの相互作用は、デバイス設計と外部電界によって制御される、高度に調整可能な異方性を持つことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hole spin qubits are frontrunner platforms for scalable quantum computers,
but state-of-the-art devices suffer from noise originating from the hyperfine
interactions with nuclear defects. We show that these interactions have a
highly tunable anisotropy that is controlled by device design and external
electric fields. This tunability enables sweet spots where the hyperfine noise
is suppressed by an order of magnitude and is comparable to isotopically
purified materials. We identify surprisingly simple designs where the qubits
are highly coherent and are largely unaffected by both charge and hyperfine
noise. We find that the large spin-orbit interaction typical of elongated
quantum dots not only speeds up qubit operations, but also dramatically
renormalizes the hyperfine noise, altering qualitatively the dynamics of driven
qubits and enhancing the fidelity of qubit gates. Our findings serve as
guidelines to design high performance qubits for scaling up quantum computers.
- Abstract(参考訳): ホールスピン量子ビットはスケーラブルな量子コンピュータのフロントエンドプラットフォームであるが、最先端のデバイスは原子核欠陥との超微細な相互作用に起因するノイズに悩まされている。
これらの相互作用は、デバイス設計と外部電界によって制御される高度に調整可能な異方性を有する。
この調整性により、超微細ノイズがマグニチュードで抑制され、異方性に精製された材料に匹敵するスイートスポットが可能になる。
量子ビットは非常に整合性が高く、電荷と超微細ノイズの影響を受けない驚くほど単純な設計を同定する。
長い量子ドットに典型的な大きなスピン軌道相互作用は、量子ビット演算を高速化するだけでなく、極小ノイズを劇的に再正規化し、駆動する量子ビットのダイナミクスを定性的に変化させ、量子ビットゲートの忠実度を高める。
本研究は,量子コンピュータのスケールアップのための高性能量子ビットの設計ガイドラインとして機能する。
関連論文リスト
- Dynamic sweet spot of driven flopping-mode spin qubits in planar quantum dots [0.0]
平面二重量子ドット(DQD)スピン量子ビットに対する電気ノイズの影響について, 点レベルに印加した交流ゲートの影響について検討した。
クォービットをオフ共鳴的に駆動することは電荷ノイズの影響を効果的に軽減し、ダイナミックなスイートスポットの出現につながる。
論文 参考訳(メタデータ) (2024-08-07T12:36:48Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
ボソニックcQEDは、非線形回路素子に結合した高温超伝導キャビティの光電場を用いる。
空洞コヒーレンスを劣化させることなく, 相互作用系を高速に切り替える実験を行った。
我々の研究は、単一のプラットフォーム内での光-物質相互作用のフル範囲を探索する新しいパラダイムを開く。
論文 参考訳(メタデータ) (2023-12-22T13:01:32Z) - High-fidelity spin qubit shuttling via large spin-orbit interaction [0.0]
ゼーマン場の大きな不均一性は、運動するスピン状態のコヒーレンスを安定化させる。
我々の発見は一般に幅広い設定に適用でき、大規模量子プロセッサへの道を開くことができる。
論文 参考訳(メタデータ) (2023-11-27T16:13:16Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
電子スピンレジスタのサイズを拡大するためのスケーラブルなアプローチを提案する。
我々は, 中心NVのコヒーレンス限界外における未知電子スピンの検出とコヒーレント制御を実証するために, このアプローチを実験的に実現した。
我々の研究は、ナノスケールセンシングを推進し、誤り訂正のための相関ノイズスペクトロスコピーを有効にし、量子通信のためのスピンチェーン量子ワイヤの実現を促進するため、より大きな量子レジスタを工学的に開発する方法を開拓する。
論文 参考訳(メタデータ) (2023-06-29T17:55:16Z) - Variational waveguide QED simulators [58.720142291102135]
導波管QEDシミュレータは1次元フォトニックバンドギャップ材料と相互作用する量子エミッタによって構成される。
ここでは、これらの相互作用がより効率的な変分量子アルゴリズムを開発するためのリソースとなることを実証する。
論文 参考訳(メタデータ) (2023-02-03T18:55:08Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
進化的アルゴリズムに基づく量子状態工学には、機械学習によるアプローチを採用しています。
我々は、単一のモード駆動マイクロ波共振器を介して相互作用する、量子ビットのネットワーク(直接結合のない人工原子の状態に符号化された)を考える。
アルゴリズムは理想的なノイズフリー設定で訓練されているにもかかわらず、高い量子忠実度とノイズに対するレジリエンスを観測する。
論文 参考訳(メタデータ) (2022-06-29T14:34:00Z) - Hole spin qubits in thin curved quantum wells [0.0]
Hole spin qubitsはスケーラブルな量子コンピュータのための最前線のプラットフォームである。
これまでで最も速いスピン量子ビットは、閉じ込め方向の長い量子ドットで定義される。
これらの系では、量子ビットの寿命は電荷ノイズによって強く制限される。
我々は、平面CMOS技術と互換性のある、異なるスケーラブルな量子ビット設計を提案する。
論文 参考訳(メタデータ) (2022-04-18T08:34:38Z) - Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low
power [0.0]
平面Geヘテロ構造におけるホールスピン量子ビットは、スケーラブルな量子コンピュータのための最前線のプラットフォームの一つである。
我々はこれらの相互作用を桁違いに拡張する最小限の設計修正を提案する。
我々のアプローチは、量子ドットを一方向に強く絞る非対称ポテンシャルに基づいている。
論文 参考訳(メタデータ) (2021-03-30T23:46:07Z) - Hole spin qubits in Si FinFETs with fully tunable spin-orbit coupling
and sweet spots for charge noise [0.0]
理論的には、Si FinFETは現代のCMOS技術とあまり互換性がないだけでなく、電荷ノイズを完全に除去する操作可能なスイートスポットを提示する。
我々は、量子ビット性能を最大化し、スケーラブルなスピンベースの量子コンピュータへの道を開くことができる設計を特定する。
論文 参考訳(メタデータ) (2020-11-18T17:30:33Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
本研究では,核スピン浴と相互作用する常磁性欠陥の量子力学について検討した。
提案された理論的アプローチは、第一原理からスピン量子ビットのコヒーレンス特性を設計する方法を舗装する。
論文 参考訳(メタデータ) (2020-10-21T15:37:59Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。