Collective effects on the performance and stability of quantum heat
engines
- URL: http://arxiv.org/abs/2106.13817v2
- Date: Tue, 12 Apr 2022 18:25:03 GMT
- Title: Collective effects on the performance and stability of quantum heat
engines
- Authors: Leonardo da Silva Souza, Gonzalo Manzano, Rosario Fazio, Fernando
Iemini
- Abstract summary: Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent predictions for quantum-mechanical enhancements in the operation of
small heat engines have raised renewed interest in their study from both a
fundamental perspective and in view of applications. One essential question is
whether collective effects may help to carry enhancements over larger scales,
when increasing the number of systems composing the working substance of the
engine. Such enhancements may consider not only power and efficiency, that is
its performance, but, additionally, its constancy, i.e. the stability of the
engine with respect to unavoidable environmental fluctuations. We explore this
issue by introducing a many-body quantum heat engine model composed by spin
pairs working in continuous operation. We study how power, efficiency and
constancy scale with the number of spins composing the engine and introduce a
well-defined macroscopic limit where analytical expressions are obtained. Our
results predict power enhancements, both in finite-size and macroscopic cases,
for a broad range of system parameters and temperatures, without compromising
the engine efficiency, accompanied by coherence-enhanced constancy for finite
sizes. We discuss these quantities in connection to Thermodynamic Uncertainty
Relations (TUR).
Related papers
- Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Powerful ordered collective heat engines [58.720142291102135]
We introduce a class of engines in which the regime of units operating synchronously can boost the performance.
We show that the interplay between Ising-like interactions and a collective ordered regime is crucial to operate as a heat engine.
arXiv Detail & Related papers (2023-01-16T20:14:19Z) - Correlation-boosted quantum engine: A proof-of-principle demonstration [0.0]
We design and implement a non-classically correlated SWAP heat engine that allows to achieve an efficiency above the standard Carnot limit.
The boosted efficiency arises from a trade-off between the entropy production and the consumption of quantum correlations.
We implement a proof-of-principle demonstration of the engine efficiency enhancement by effectively tailoring the thermal engine on a cloud quantum processor.
arXiv Detail & Related papers (2022-11-21T13:38:54Z) - Thermodynamics and Fluctuations in Quantum Heat Engines under Reservoir
Squeezing [7.109424824240926]
We show that reservoir squeezing significantly enhances the performance by increasing the thermodynamic efficiency and the power.
An experimental scheme for realizing this quantum heat engine is proposed using a single-electron spin pertaining to a trapped 40Ca$+$ ion.
arXiv Detail & Related papers (2022-09-13T11:15:31Z) - Exploiting coherence for quantum thermodynamic advantage [0.0]
We investigate the impact of coherence on the thermodynamic tasks of a collision model composed of a system interacting.
Our results show the advantages of utilising coherence as a resource in the operation of the machine.
We find an effective upper bound to the efficiency of the thermal machine operating as an engine in the presence of a coherent reservoir.
arXiv Detail & Related papers (2022-02-15T15:42:45Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - The problem of engines in statistical physics [62.997667081978825]
Engines are open systems that can generate work cyclically, at the expense of an external disequilibrium.
Recent advances in the theory of open quantum systems point to a more realistic description of autonomous engines.
We show how the external loading force and the thermal noise may be incorporated into the relevant equations of motion.
arXiv Detail & Related papers (2021-08-17T03:59:09Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z) - Thermodynamic uncertainty relation in slowly driven quantum heat engines [0.0]
We show that an alternative TUR is satisfied, which is less restrictive than that of steady-state engines.
We illustrate our findings in the experimentally relevant model of a single-ion heat engine.
arXiv Detail & Related papers (2020-06-12T16:55:05Z) - Quantum jump approach to microscopic heat engines [0.0]
Modern technologies could soon make it possible to investigate the operation cycles of quantum heat engines by counting the photons that are emitted and absorbed by their working systems.
We show that such experiments would give access to a set of observables that determine the trade-off between power and efficiency in finite-time engine cycles.
arXiv Detail & Related papers (2020-05-25T17:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.