Creation of Entangled Photonic States Using Linear Optics
- URL: http://arxiv.org/abs/2106.13825v1
- Date: Fri, 25 Jun 2021 18:02:42 GMT
- Title: Creation of Entangled Photonic States Using Linear Optics
- Authors: Sara Bartolucci, Patrick M. Birchall, Mercedes Gimeno-Segovia, Eric
Johnston, Konrad Kieling, Mihir Pant, Terry Rudolph, Jake Smith, Chris
Sparrow, Mihai D. Vidrighin
- Abstract summary: We introduce techniques and methods to generate photonic entangled states with high probability.
We show how to improve Bell state preparation from four single photons to up to p=2/3, boost Type-I fusion to 75% with a dual-rail Bell state ancilla and improve Type-II fusion beyond the limits of Bell state discrimination.
- Score: 0.09287179270753103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using only linear optical elements, the creation of dual-rail photonic
entangled states is inherently probabilistic. Known entanglement generation
schemes have low success probabilities, requiring large-scale multiplexing to
achieve near-deterministic operation of quantum information processing
protocols. In this paper, we introduce multiple techniques and methods to
generate photonic entangled states with high probability, which have the
potential to reduce the footprint of Linear Optical Quantum Computing (LOQC)
architectures drastically. Most notably, we are showing how to improve Bell
state preparation from four single photons to up to p=2/3, boost Type-I fusion
to 75% with a dual-rail Bell state ancilla and improve Type-II fusion beyond
the limits of Bell state discrimination.
Related papers
- Programmable entangled qubit states on a linear-optical platform [0.0]
We present an experimental platform for linear-optical quantum information processing.
We demonstrate the capability in producing heralded arbitrary two-qubit dual-rail encoded states.
We achieved high-fidelity quantum state preparation, with a fidelity of 98.5% specifically for the Bell state.
arXiv Detail & Related papers (2024-10-21T07:10:08Z) - Subtraction and Addition of Propagating Photons by Two-Level Emitters [2.321156230142032]
We show that a passive two-level nonlinearity suffices to implement non-Gaussian quantum operations on propagating field modes.
We accurately describe the single-photon subtraction process by elements of an intuitive quantum-trajectory model.
arXiv Detail & Related papers (2024-04-18T16:55:33Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - A scheme to create and verify scalable entanglement in optical lattice [17.18535438442883]
We propose an efficient scheme to generate and characterize global entanglement in the optical lattice.
With only two-layer quantum circuits, the generation utilizes two-qubit entangling gates based on the superexchange interaction in double wells.
Our entanglement generation and verification protocols provide the foundation for the further quantum information processing in optical lattice.
arXiv Detail & Related papers (2022-09-04T04:48:05Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Compact linear optical scheme for Bell state generation [0.0]
We report the most compact scheme producing the dual-rail-encoded Bell states out of four single photons.
Our scheme requires a five-mode interferometer and a single photon detector, while the previously known schemes use six-mode interferometers and two photon detectors.
arXiv Detail & Related papers (2021-05-13T14:01:32Z) - Climbing the Fock ladder: Advancing multiphoton state generation [0.0]
A scheme for the enhanced generation of higher photon-number states is realized, using an optical time-multiplexing setting.
We use a quantum feedback mechanism for already generated photons to induce self-seeding of the consecutive nonlinear process.
We compare the fidelities and success probabilities of our protocol with the common direct heralding of photon-number states.
arXiv Detail & Related papers (2021-05-08T15:38:56Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.