Heralded generation of entanglement with photons
- URL: http://arxiv.org/abs/2502.00982v1
- Date: Mon, 03 Feb 2025 01:34:48 GMT
- Title: Heralded generation of entanglement with photons
- Authors: Imogen Forbes, Farzad Ghafari, Edward C. R. Deacon, Sukhjit P. Singh, Emilien Lavie, Patrick Yard, Reece D. Shaw, Anthony Laing, Nora Tischler,
- Abstract summary: Entangled states of photons form the backbone of many quantum technologies.
In the prevailing but fundamentally limited generation technique, known as postselection, the target photons are measured destructively in the generation process.
In the alternative approach -- heralded state generation -- the successful creation of a desired state is verified by the detection of ancillary photons.
- Score: 0.0
- License:
- Abstract: Entangled states of photons form the backbone of many quantum technologies. Due to the lack of effective photon-photon interactions, the generation of these states is typically probabilistic. In the prevailing but fundamentally limited generation technique, known as postselection, the target photons are measured destructively in the generation process. By contrast, in the alternative approach -- heralded state generation -- the successful creation of a desired state is verified by the detection of ancillary photons. Heralded state generation is superior to postselection in several critical ways: It enables free usage of the prepared states, allows for the success probability to be arbitrarily increased via multiplexing, and provides a scalable route to quantum information processing using photons. Here, we review theoretical proposals and experimental realizations of heralded entangled photonic state generation, as well as the impact of realistic experimental errors. We then discuss the wide-ranging applications of these states for quantum technologies, including resource states in linear optical quantum computing, entanglement swapping for repeater networks, fundamental physics, and quantum metrology.
Related papers
- A novel multi-photon entangled state with enhanced resilience to path loss [1.3654846342364308]
This paper introduces a novel multi-photon entangled state, which generalizes the maximally entangled single-photon state.
We demonstrate the novelty of the proposed state through a simplified target detection model and illustrate its superior performance over traditional single-photon protocols.
Our findings suggest that the proposed multi-photon state holds significant promise for enhancing the efficiency and reliability of photonic applications subject to loss.
arXiv Detail & Related papers (2024-05-13T19:12:39Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Deterministic Free-Propagating Photonic Qubits with Negative Wigner
Functions [0.0]
Coherent states ubiquitous in classical and quantum communications, squeezed states used in quantum sensing, and even highly-entangled states studied in the context of quantum computing can be produced deterministically.
We describe the first fully deterministic preparation of non-Gaussian Wigner-negative states of light, obtained by mapping the internal state of an intracavdberg superatom onto an optical qubit.
arXiv Detail & Related papers (2022-09-05T16:37:42Z) - Resolution of 100 photons and quantum generation of unbiased random
numbers [0.0]
Quantum detection of light is mostly relegated to the microscale.
The ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications.
In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors.
arXiv Detail & Related papers (2022-05-02T21:34:01Z) - All-optical Quantum State Engineering for Rotation-symmetric Bosonic
States [0.0]
We propose and analyze a method to generate a variety of non-Gaussian states using coherent photon subtraction.
Our method can be readily implemented with current quantum photonic technologies.
arXiv Detail & Related papers (2021-05-23T22:43:23Z) - Climbing the Fock ladder: Advancing multiphoton state generation [0.0]
A scheme for the enhanced generation of higher photon-number states is realized, using an optical time-multiplexing setting.
We use a quantum feedback mechanism for already generated photons to induce self-seeding of the consecutive nonlinear process.
We compare the fidelities and success probabilities of our protocol with the common direct heralding of photon-number states.
arXiv Detail & Related papers (2021-05-08T15:38:56Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.