論文の概要: Ladder Polynomial Neural Networks
- arxiv url: http://arxiv.org/abs/2106.13834v2
- Date: Tue, 29 Jun 2021 04:57:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-01 11:36:22.677410
- Title: Ladder Polynomial Neural Networks
- Title(参考訳): Ladder Polynomial Neural Networks
- Authors: Li-Ping Liu, Ruiyuan Gu, Xiaozhe Hu
- Abstract要約: 多項式関数は有用な解析的性質を多数持っているが、それらの関数クラスは制限されていると考えられるため、学習モデルとして使われることは滅多にない。
この研究は積の活性化を利用してフィードフォワードニューラルネットワークを構築し、乗算から構築された新しい活性化関数である。
- 参考スコア(独自算出の注目度): 6.902168821854859
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Polynomial functions have plenty of useful analytical properties, but they
are rarely used as learning models because their function class is considered
to be restricted. This work shows that when trained properly polynomial
functions can be strong learning models. Particularly this work constructs
polynomial feedforward neural networks using the product activation, a new
activation function constructed from multiplications. The new neural network is
a polynomial function and provides accurate control of its polynomial order. It
can be trained by standard training techniques such as batch normalization and
dropout. This new feedforward network covers several previous polynomial models
as special cases. Compared with common feedforward neural networks, the
polynomial feedforward network has closed-form calculations of a few
interesting quantities, which are very useful in Bayesian learning. In a series
of regression and classification tasks in the empirical study, the proposed
model outperforms previous polynomial models.
- Abstract(参考訳): 多項式関数は有用な解析的性質を多数持っているが、それらの関数クラスは制限されていると考えられるため、学習モデルとして使われることは滅多にない。
この研究は、適切な多項式関数を訓練すると強い学習モデルになることを示す。
特にこの研究は、乗法から構築した新しい活性化関数である積活性化を用いて多項式フィードフォワードニューラルネットワークを構築する。
新しいニューラルネットワークは多項式関数であり、多項式の順序を正確に制御する。
バッチ正規化やドロップアウトといった標準的なトレーニングテクニックでトレーニングすることができる。
この新しいfeedforwardネットワークは、いくつかの以前の多項式モデルを特別なケースとしてカバーする。
一般的なフィードフォワードニューラルネットワークと比較して、多項式フィードフォワードネットワークはいくつかの興味深い量のクローズドフォーム計算を持ち、ベイズ学習において非常に有用である。
経験的研究における回帰と分類の一連のタスクにおいて、提案モデルは以前の多項式モデルよりも優れている。
関連論文リスト
- Multilinear Operator Networks [60.7432588386185]
ポリノミアルネットワーク(Polynomial Networks)は、アクティベーション関数を必要としないモデルのクラスである。
マルチリニア演算子のみに依存するMONetを提案する。
論文 参考訳(メタデータ) (2024-01-31T16:52:19Z) - Regularization of polynomial networks for image recognition [78.4786845859205]
PN(Polynomial Networks)は、将来性があり、解釈可能性も向上した代替手法として登場した。
6つのベンチマークでResNetのパフォーマンスに到達できるPNのクラスを紹介します。
論文 参考訳(メタデータ) (2023-03-24T10:05:22Z) - A Tutorial on Neural Networks and Gradient-free Training [0.0]
本稿では,自己完結型チュートリアル方式で,ニューラルネットワークのコンパクトな行列ベース表現を提案する。
ニューラルネットワークは数個のベクトル値関数を構成する数学的非線形関数である。
論文 参考訳(メタデータ) (2022-11-26T15:33:11Z) - Neural Estimation of Submodular Functions with Applications to
Differentiable Subset Selection [50.14730810124592]
サブモジュール関数と変種は、多様性とカバレッジを特徴付ける能力を通じて、データ選択と要約のための重要なツールとして登場した。
本稿では,モノトーンおよび非モノトーン部分モジュラー関数のためのフレキシブルニューラルネットワークであるFLEXSUBNETを提案する。
論文 参考訳(メタデータ) (2022-10-20T06:00:45Z) - Interaction Decompositions for Tensor Network Regression [0.0]
異なる回帰器の相対的重要性を次数関数として評価する方法を示す。
相互作用次数の小さな部分集合にのみ明示的にトレーニングされた新しいタイプのテンソルネットワークモデルを導入する。
このことは、標準テンソルネットワークモデルが、低次項を非常に利用しない非効率な方法でそれらの回帰器を利用することを示唆している。
論文 参考訳(メタデータ) (2022-08-11T20:17:27Z) - Bagged Polynomial Regression and Neural Networks [0.0]
時系列とデータセットの回帰は、ニューラルネットワークと同じ関数クラスを近似することができる。
textitbagged regression (BPR)は、ニューラルネットワークの魅力的な代替品である。
BPRは、衛星データを用いた作物分類において、ニューラルネットワークと同様に機能する。
論文 参考訳(メタデータ) (2022-05-17T19:55:56Z) - NN2Poly: A polynomial representation for deep feed-forward artificial
neural networks [0.6502001911298337]
NN2Polyは、すでに訓練済みの完全接続フィードフォワード人工ニューラルネットワークの明示的なモデルを得るための理論的アプローチである。
このアプローチは、単一の隠蔽層ネットワークに限定された文献で提案された以前の考え方を拡張している。
論文 参考訳(メタデータ) (2021-12-21T17:55:22Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Towards a mathematical framework to inform Neural Network modelling via
Polynomial Regression [0.0]
特定の条件が局所的に満たされた場合、ほぼ同一の予測が可能であることが示されている。
生成したデータから学習すると,そのデータを局所的に近似的に生成する。
論文 参考訳(メタデータ) (2021-02-07T17:56:16Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
強化学習のコアにおける探索・探索トレードオフについて検討する。
特に、関数クラス $mathcalF$ の複雑さが関数の複雑さを特徴づけていることを証明する。
私たちの後悔の限界はエピソードの数とは無関係です。
論文 参考訳(メタデータ) (2020-11-09T18:32:22Z) - Deep Polynomial Neural Networks [77.70761658507507]
$Pi$Netsは拡張に基づいた関数近似の新しいクラスである。
$Pi$Netsは、画像生成、顔検証、および3Dメッシュ表現学習という3つの困難なタスクで、最先端の結果を生成する。
論文 参考訳(メタデータ) (2020-06-20T16:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。