EARLIN: Early Out-of-Distribution Detection for Resource-efficient
Collaborative Inference
- URL: http://arxiv.org/abs/2106.13842v2
- Date: Tue, 29 Jun 2021 01:27:49 GMT
- Title: EARLIN: Early Out-of-Distribution Detection for Resource-efficient
Collaborative Inference
- Authors: Sumaiya Tabassum Nimi, Md Adnan Arefeen, Md Yusuf Sarwar Uddin,
Yugyung Lee
- Abstract summary: Collaborative inference enables resource-constrained edge devices to make inferences by uploading inputs to a server.
While this setup works cost-effectively for successful inferences, it severely underperforms when the model faces input samples on which the model was not trained.
We propose a novel lightweight OOD detection approach that mines important features from the shallow layers of a pretrained CNN model.
- Score: 4.826988182025783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative inference enables resource-constrained edge devices to make
inferences by uploading inputs (e.g., images) to a server (i.e., cloud) where
the heavy deep learning models run. While this setup works cost-effectively for
successful inferences, it severely underperforms when the model faces input
samples on which the model was not trained (known as Out-of-Distribution (OOD)
samples). If the edge devices could, at least, detect that an input sample is
an OOD, that could potentially save communication and computation resources by
not uploading those inputs to the server for inference workload. In this paper,
we propose a novel lightweight OOD detection approach that mines important
features from the shallow layers of a pretrained CNN model and detects an input
sample as ID (In-Distribution) or OOD based on a distance function defined on
the reduced feature space. Our technique (a) works on pretrained models without
any retraining of those models, and (b) does not expose itself to any OOD
dataset (all detection parameters are obtained from the ID training dataset).
To this end, we develop EARLIN (EARLy OOD detection for Collaborative
INference) that takes a pretrained model and partitions the model at the OOD
detection layer and deploys the considerably small OOD part on an edge device
and the rest on the cloud. By experimenting using real datasets and a prototype
implementation, we show that our technique achieves better results than other
approaches in terms of overall accuracy and cost when tested against popular
OOD datasets on top of popular deep learning models pretrained on benchmark
datasets.
Related papers
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Can Pre-trained Networks Detect Familiar Out-of-Distribution Data? [37.36999826208225]
We study the effect of PT-OOD on the OOD detection performance of pre-trained networks.
We find that the low linear separability of PT-OOD in the feature space heavily degrades the PT-OOD detection performance.
We propose a unique solution to large-scale pre-trained models: Leveraging powerful instance-by-instance discriminative representations of pre-trained models.
arXiv Detail & Related papers (2023-10-02T02:01:00Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Using Semantic Information for Defining and Detecting OOD Inputs [3.9577682622066264]
Out-of-distribution (OOD) detection has received some attention recently.
We demonstrate that the current detectors inherit the biases in the training dataset.
This can render the current OOD detectors impermeable to inputs lying outside the training distribution but with the same semantic information.
We perform OOD detection on semantic information extracted from the training data of MNIST and COCO datasets.
arXiv Detail & Related papers (2023-02-21T21:31:20Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD detection is a key component of a reliable machine-learning model for any industry-scale application.
We propose POORE - POsthoc pseudo-Ood REgularization, that generates pseudo-OOD samples using in-distribution (IND) data.
We extensively evaluate our framework on three real-world dialogue systems, achieving new state-of-the-art in OOD detection.
arXiv Detail & Related papers (2022-10-17T14:32:02Z) - How Useful are Gradients for OOD Detection Really? [5.459639971144757]
Out of distribution (OOD) detection is a critical challenge in deploying highly performant machine learning models in real-life applications.
We provide an in-depth analysis and comparison of gradient based methods for OOD detection.
We propose a general, non-gradient based method of OOD detection which improves over previous baselines in both performance and computational efficiency.
arXiv Detail & Related papers (2022-05-20T21:10:05Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
We introduce Igeood, an effective method for detecting out-of-distribution (OOD) samples.
Igeood applies to any pre-trained neural network, works under various degrees of access to the machine learning model.
We show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.
arXiv Detail & Related papers (2022-03-15T11:26:35Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.