Igeood: An Information Geometry Approach to Out-of-Distribution
Detection
- URL: http://arxiv.org/abs/2203.07798v1
- Date: Tue, 15 Mar 2022 11:26:35 GMT
- Title: Igeood: An Information Geometry Approach to Out-of-Distribution
Detection
- Authors: Eduardo Dadalto Camara Gomes, Florence Alberge, Pierre Duhamel and
Pablo Piantanida
- Abstract summary: We introduce Igeood, an effective method for detecting out-of-distribution (OOD) samples.
Igeood applies to any pre-trained neural network, works under various degrees of access to the machine learning model.
We show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.
- Score: 35.04325145919005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable out-of-distribution (OOD) detection is fundamental to implementing
safer modern machine learning (ML) systems. In this paper, we introduce Igeood,
an effective method for detecting OOD samples. Igeood applies to any
pre-trained neural network, works under various degrees of access to the ML
model, does not require OOD samples or assumptions on the OOD data but can also
benefit (if available) from OOD samples. By building on the geodesic
(Fisher-Rao) distance between the underlying data distributions, our
discriminator can combine confidence scores from the logits outputs and the
learned features of a deep neural network. Empirically, we show that Igeood
outperforms competing state-of-the-art methods on a variety of network
architectures and datasets.
Related papers
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Logit Scaling for Out-of-Distribution Detection [13.017887434494373]
We propose a simple, post-hoc method that does not require access to the training data distribution.
Our method, Logit Scaling (LTS), scales the logits in a manner that effectively distinguishes between in-distribution (ID) and OOD samples.
We tested our method on benchmarks across various scales, including CIFAR-10, CIFAR-100, ImageNet and OpenOOD.
arXiv Detail & Related papers (2024-09-02T11:10:44Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
We introduce perturbations of the class projections in the final fully connected layer which creates a richer representation of the input.
We achieve state-of-the-art OOD detection results across multiple benchmarks of the OpenOOD framework.
arXiv Detail & Related papers (2024-05-27T13:38:28Z) - Gradient-Regularized Out-of-Distribution Detection [28.542499196417214]
One of the challenges for neural networks in real-life applications is the overconfident errors these models make when the data is not from the original training distribution.
We propose the idea of leveraging the information embedded in the gradient of the loss function during training to enable the network to learn a desired OOD score for each sample.
We also develop a novel energy-based sampling method to allow the network to be exposed to more informative OOD samples during the training phase.
arXiv Detail & Related papers (2024-04-18T17:50:23Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - WeShort: Out-of-distribution Detection With Weak Shortcut structure [0.0]
We propose a simple and effective post-hoc technique, WeShort, to reduce the overconfidence of neural networks on OOD data.
Our method is compatible with different OOD detection scores and can generalize well to different architectures of networks.
arXiv Detail & Related papers (2022-06-23T07:59:10Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - EARLIN: Early Out-of-Distribution Detection for Resource-efficient
Collaborative Inference [4.826988182025783]
Collaborative inference enables resource-constrained edge devices to make inferences by uploading inputs to a server.
While this setup works cost-effectively for successful inferences, it severely underperforms when the model faces input samples on which the model was not trained.
We propose a novel lightweight OOD detection approach that mines important features from the shallow layers of a pretrained CNN model.
arXiv Detail & Related papers (2021-06-25T18:43:23Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.