Transflower: probabilistic autoregressive dance generation with
multimodal attention
- URL: http://arxiv.org/abs/2106.13871v1
- Date: Fri, 25 Jun 2021 20:14:28 GMT
- Title: Transflower: probabilistic autoregressive dance generation with
multimodal attention
- Authors: Guillermo Valle-P\'erez, Gustav Eje Henter, Jonas Beskow, Andr\'e
Holzapfel, Pierre-Yves Oudeyer, Simon Alexanderson
- Abstract summary: We present a novel probabilistic autoregressive architecture that models the distribution over future poses with a normalizing flow conditioned on previous poses as well as music context.
Second, we introduce the currently largest 3D dance-motion dataset, obtained with a variety of motion-capture technologies, and including both professional and casual dancers.
- Score: 31.308435764603658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dance requires skillful composition of complex movements that follow
rhythmic, tonal and timbral features of music. Formally, generating dance
conditioned on a piece of music can be expressed as a problem of modelling a
high-dimensional continuous motion signal, conditioned on an audio signal. In
this work we make two contributions to tackle this problem. First, we present a
novel probabilistic autoregressive architecture that models the distribution
over future poses with a normalizing flow conditioned on previous poses as well
as music context, using a multimodal transformer encoder. Second, we introduce
the currently largest 3D dance-motion dataset, obtained with a variety of
motion-capture technologies, and including both professional and casual
dancers. Using this dataset, we compare our new model against two baselines,
via objective metrics and a user study, and show that both the ability to model
a probability distribution, as well as being able to attend over a large motion
and music context are necessary to produce interesting, diverse, and realistic
dance that matches the music.
Related papers
- LM2D: Lyrics- and Music-Driven Dance Synthesis [28.884929875333846]
LM2D is designed to create dance conditioned on both music and lyrics in one diffusion generation step.
We introduce the first 3D dance-motion dataset that encompasses both music and lyrics, obtained with pose estimation technologies.
The results demonstrate LM2D is able to produce realistic and diverse dance matching both lyrics and music.
arXiv Detail & Related papers (2024-03-14T13:59:04Z) - DiffDance: Cascaded Human Motion Diffusion Model for Dance Generation [89.50310360658791]
We present a novel cascaded motion diffusion model, DiffDance, designed for high-resolution, long-form dance generation.
This model comprises a music-to-dance diffusion model and a sequence super-resolution diffusion model.
We demonstrate that DiffDance is capable of generating realistic dance sequences that align effectively with the input music.
arXiv Detail & Related papers (2023-08-05T16:18:57Z) - TM2D: Bimodality Driven 3D Dance Generation via Music-Text Integration [75.37311932218773]
We propose a novel task for generating 3D dance movements that simultaneously incorporate both text and music modalities.
Our approach can generate realistic and coherent dance movements conditioned on both text and music while maintaining comparable performance with the two single modalities.
arXiv Detail & Related papers (2023-04-05T12:58:33Z) - BRACE: The Breakdancing Competition Dataset for Dance Motion Synthesis [123.73677487809418]
We introduce a new dataset aiming to challenge common assumptions in dance motion synthesis.
We focus on breakdancing which features acrobatic moves and tangled postures.
Our efforts produced the BRACE dataset, which contains over 3 hours and 30 minutes of densely annotated poses.
arXiv Detail & Related papers (2022-07-20T18:03:54Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
We present Dance2Music-GAN (D2M-GAN), a novel adversarial multi-modal framework that generates musical samples conditioned on dance videos.
Our proposed framework takes dance video frames and human body motion as input, and learns to generate music samples that plausibly accompany the corresponding input.
arXiv Detail & Related papers (2022-04-01T17:53:39Z) - Music-to-Dance Generation with Optimal Transport [48.92483627635586]
We propose a Music-to-Dance with Optimal Transport Network (MDOT-Net) for learning to generate 3D dance choreographs from music.
We introduce an optimal transport distance for evaluating the authenticity of the generated dance distribution and a Gromov-Wasserstein distance to measure the correspondence between the dance distribution and the input music.
arXiv Detail & Related papers (2021-12-03T09:37:26Z) - DanceFormer: Music Conditioned 3D Dance Generation with Parametric
Motion Transformer [23.51701359698245]
In this paper, we reformulate it by a two-stage process, ie, a key pose generation and then an in-between parametric motion curve prediction.
We propose a large-scale music conditioned 3D dance dataset, called PhantomDance, that is accurately labeled by experienced animators.
Experiments demonstrate that the proposed method, even trained by existing datasets, can generate fluent, performative, and music-matched 3D dances.
arXiv Detail & Related papers (2021-03-18T12:17:38Z) - Learning to Generate Diverse Dance Motions with Transformer [67.43270523386185]
We introduce a complete system for dance motion synthesis.
A massive dance motion data set is created from YouTube videos.
A novel two-stream motion transformer generative model can generate motion sequences with high flexibility.
arXiv Detail & Related papers (2020-08-18T22:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.