DuetGen: Music Driven Two-Person Dance Generation via Hierarchical Masked Modeling
- URL: http://arxiv.org/abs/2506.18680v1
- Date: Mon, 23 Jun 2025 14:22:50 GMT
- Title: DuetGen: Music Driven Two-Person Dance Generation via Hierarchical Masked Modeling
- Authors: Anindita Ghosh, Bing Zhou, Rishabh Dabral, Jian Wang, Vladislav Golyanik, Christian Theobalt, Philipp Slusallek, Chuan Guo,
- Abstract summary: We present DuetGen, a framework for generating interactive two-person dances from music.<n>Inspired by the recent advances in motion synthesis, we propose a two-stage solution.<n>We represent both dancers' motions as a unified whole to learn the necessary motion tokens.
- Score: 70.79846001735547
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present DuetGen, a novel framework for generating interactive two-person dances from music. The key challenge of this task lies in the inherent complexities of two-person dance interactions, where the partners need to synchronize both with each other and with the music. Inspired by the recent advances in motion synthesis, we propose a two-stage solution: encoding two-person motions into discrete tokens and then generating these tokens from music. To effectively capture intricate interactions, we represent both dancers' motions as a unified whole to learn the necessary motion tokens, and adopt a coarse-to-fine learning strategy in both the stages. Our first stage utilizes a VQ-VAE that hierarchically separates high-level semantic features at a coarse temporal resolution from low-level details at a finer resolution, producing two discrete token sequences at different abstraction levels. Subsequently, in the second stage, two generative masked transformers learn to map music signals to these dance tokens: the first producing high-level semantic tokens, and the second, conditioned on music and these semantic tokens, producing the low-level tokens. We train both transformers to learn to predict randomly masked tokens within the sequence, enabling them to iteratively generate motion tokens by filling an empty token sequence during inference. Through the hierarchical masked modeling and dedicated interaction representation, DuetGen achieves the generation of synchronized and interactive two-person dances across various genres. Extensive experiments and user studies on a benchmark duet dance dataset demonstrate state-of-the-art performance of DuetGen in motion realism, music-dance alignment, and partner coordination.
Related papers
- Motion is the Choreographer: Learning Latent Pose Dynamics for Seamless Sign Language Generation [24.324964949728045]
We propose a new paradigm for sign language video generation that decouples motion semantics from signer identity.<n>First, we construct a signer-independent multimodal motion lexicon, where each gloss is stored as identity-agnostic pose, gesture, and 3D mesh sequences.<n>This compact representation enables our second key innovation: a discrete-to-continuous motion synthesis stage that transforms retrieved gloss sequences into temporally coherent motion trajectories.
arXiv Detail & Related papers (2025-08-06T03:23:10Z) - X-Dancer: Expressive Music to Human Dance Video Generation [26.544761204917336]
X-Dancer is a novel zero-shot music-driven image animation pipeline.<n>It creates diverse and long-range lifelike human dance videos from a single static image.
arXiv Detail & Related papers (2025-02-24T18:47:54Z) - Duolando: Follower GPT with Off-Policy Reinforcement Learning for Dance Accompaniment [87.20240797625648]
We introduce a novel task within the field of 3D dance generation, termed dance accompaniment.
It requires the generation of responsive movements from a dance partner, the "follower", synchronized with the lead dancer's movements and the underlying musical rhythm.
We propose a GPT-based model, Duolando, which autoregressively predicts the subsequent tokenized motion conditioned on the coordinated information of the music, the leader's and the follower's movements.
arXiv Detail & Related papers (2024-03-27T17:57:02Z) - TM2D: Bimodality Driven 3D Dance Generation via Music-Text Integration [75.37311932218773]
We propose a novel task for generating 3D dance movements that simultaneously incorporate both text and music modalities.
Our approach can generate realistic and coherent dance movements conditioned on both text and music while maintaining comparable performance with the two single modalities.
arXiv Detail & Related papers (2023-04-05T12:58:33Z) - BRACE: The Breakdancing Competition Dataset for Dance Motion Synthesis [123.73677487809418]
We introduce a new dataset aiming to challenge common assumptions in dance motion synthesis.
We focus on breakdancing which features acrobatic moves and tangled postures.
Our efforts produced the BRACE dataset, which contains over 3 hours and 30 minutes of densely annotated poses.
arXiv Detail & Related papers (2022-07-20T18:03:54Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
We present Dance2Music-GAN (D2M-GAN), a novel adversarial multi-modal framework that generates musical samples conditioned on dance videos.
Our proposed framework takes dance video frames and human body motion as input, and learns to generate music samples that plausibly accompany the corresponding input.
arXiv Detail & Related papers (2022-04-01T17:53:39Z) - Bailando: 3D Dance Generation by Actor-Critic GPT with Choreographic
Memory [92.81383016482813]
We propose a novel music-to-dance framework, Bailando, for driving 3D characters to dance following a piece of music.
We introduce an actor-critic Generative Pre-trained Transformer (GPT) that composes units to a fluent dance coherent to the music.
Our proposed framework achieves state-of-the-art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-03-24T13:06:43Z) - Transflower: probabilistic autoregressive dance generation with
multimodal attention [31.308435764603658]
We present a novel probabilistic autoregressive architecture that models the distribution over future poses with a normalizing flow conditioned on previous poses as well as music context.
Second, we introduce the currently largest 3D dance-motion dataset, obtained with a variety of motion-capture technologies, and including both professional and casual dancers.
arXiv Detail & Related papers (2021-06-25T20:14:28Z) - DanceFormer: Music Conditioned 3D Dance Generation with Parametric
Motion Transformer [23.51701359698245]
In this paper, we reformulate it by a two-stage process, ie, a key pose generation and then an in-between parametric motion curve prediction.
We propose a large-scale music conditioned 3D dance dataset, called PhantomDance, that is accurately labeled by experienced animators.
Experiments demonstrate that the proposed method, even trained by existing datasets, can generate fluent, performative, and music-matched 3D dances.
arXiv Detail & Related papers (2021-03-18T12:17:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.