Predictive Control Using Learned State Space Models via Rolling Horizon
Evolution
- URL: http://arxiv.org/abs/2106.13911v1
- Date: Fri, 25 Jun 2021 23:23:42 GMT
- Title: Predictive Control Using Learned State Space Models via Rolling Horizon
Evolution
- Authors: Alvaro Ovalle, Simon M. Lucas
- Abstract summary: In this paper, we explore this theme combining evolutionary algorithmic planning techniques with models learned via deep learning and variational inference.
We demonstrate the approach with an agent that reliably performs online planning in a set of visual navigation tasks.
- Score: 2.1016374925364616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A large part of the interest in model-based reinforcement learning derives
from the potential utility to acquire a forward model capable of strategic long
term decision making. Assuming that an agent succeeds in learning a useful
predictive model, it still requires a mechanism to harness it to generate and
select among competing simulated plans. In this paper, we explore this theme
combining evolutionary algorithmic planning techniques with models learned via
deep learning and variational inference. We demonstrate the approach with an
agent that reliably performs online planning in a set of visual navigation
tasks.
Related papers
- Adaptive Planning with Generative Models under Uncertainty [20.922248169620783]
Planning with generative models has emerged as an effective decision-making paradigm across a wide range of domains.
While continuous replanning at each timestep might seem intuitive because it allows decisions to be made based on the most recent environmental observations, it results in substantial computational challenges.
Our work addresses this challenge by introducing a simple adaptive planning policy that leverages the generative model's ability to predict long-horizon state trajectories.
arXiv Detail & Related papers (2024-08-02T18:07:53Z) - Learning Long-Horizon Predictions for Quadrotor Dynamics [48.08477275522024]
We study the key design choices for efficiently learning long-horizon prediction dynamics for quadrotors.
We show that sequential modeling techniques showcase their advantage in minimizing compounding errors compared to other types of solutions.
We propose a novel decoupled dynamics learning approach, which further simplifies the learning process while also enhancing the approach modularity.
arXiv Detail & Related papers (2024-07-17T19:06:47Z) - Compositional Foundation Models for Hierarchical Planning [52.18904315515153]
We propose a foundation model which leverages expert foundation model trained on language, vision and action data individually together to solve long-horizon tasks.
We use a large language model to construct symbolic plans that are grounded in the environment through a large video diffusion model.
Generated video plans are then grounded to visual-motor control, through an inverse dynamics model that infers actions from generated videos.
arXiv Detail & Related papers (2023-09-15T17:44:05Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - Visual Learning-based Planning for Continuous High-Dimensional POMDPs [81.16442127503517]
Visual Tree Search (VTS) is a learning and planning procedure that combines generative models learned offline with online model-based POMDP planning.
VTS bridges offline model training and online planning by utilizing a set of deep generative observation models to predict and evaluate the likelihood of image observations in a Monte Carlo tree search planner.
We show that VTS is robust to different observation noises and, since it utilizes online, model-based planning, can adapt to different reward structures without the need to re-train.
arXiv Detail & Related papers (2021-12-17T11:53:31Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
Model-Based Reinforcement Learning involves learning a textitdynamics model from data, and then using this model to optimise behaviour.
This paper sets out to disambiguate the role of different design choices for learning dynamics models, by comparing their performance to planning with a ground-truth model.
arXiv Detail & Related papers (2021-09-29T09:50:25Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
We address the problem of learning of a spreading model such that the predictions generated from this model are accurate.
We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach.
We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model.
arXiv Detail & Related papers (2020-07-13T17:58:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.