Approach to Finding a Robust Deep Learning Model
- URL: http://arxiv.org/abs/2505.17254v1
- Date: Thu, 22 May 2025 20:05:20 GMT
- Title: Approach to Finding a Robust Deep Learning Model
- Authors: Alexey Boldyrev, Fedor Ratnikov, Andrey Shevelev,
- Abstract summary: The rapid development of machine learning (ML) and artificial intelligence (AI) applications requires the training of large numbers of models.<n>We propose a novel approach for determining model robustness using a proposed model selection algorithm designed as a meta-algorithm.<n>Within this framework, we address the influence of training sample size, model weight, and inductive bias on the robustness of deep learning models.
- Score: 0.28675177318965045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of machine learning (ML) and artificial intelligence (AI) applications requires the training of large numbers of models. This growing demand highlights the importance of training models without human supervision, while ensuring that their predictions are reliable. In response to this need, we propose a novel approach for determining model robustness. This approach, supplemented with a proposed model selection algorithm designed as a meta-algorithm, is versatile and applicable to any machine learning model, provided that it is appropriate for the task at hand. This study demonstrates the application of our approach to evaluate the robustness of deep learning models. To this end, we study small models composed of a few convolutional and fully connected layers, using common optimizers due to their ease of interpretation and computational efficiency. Within this framework, we address the influence of training sample size, model weight initialization, and inductive bias on the robustness of deep learning models.
Related papers
- Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws [52.10468229008941]
This paper formalizes an emerging learning paradigm that uses a trained model as a reference to guide and enhance the training of a target model through strategic data selection or weighting.<n>We provide theoretical insights into why this approach improves generalization and data efficiency compared to training without a reference model.<n>Building on these insights, we introduce a novel method for Contrastive Language-Image Pretraining with a reference model, termed DRRho-CLIP.
arXiv Detail & Related papers (2025-05-10T16:55:03Z) - Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.<n>We validate our approach through simulations with various planar soft manipulators.<n>Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
Common practice in model-based reinforcement learning is to learn models that model every aspect of the agent's environment.
We argue that such models are not particularly well-suited for performing scalable and robust planning in lifelong reinforcement learning scenarios.
We propose new kinds of models that only model the relevant aspects of the environment, which we call "minimal value-minimal partial models"
arXiv Detail & Related papers (2023-01-24T16:40:01Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with
Deep Reinforcement Learning [42.525696463089794]
Model Predictive Actor-Critic (MoPAC) is a hybrid model-based/model-free method that combines model predictive rollouts with policy optimization as to mitigate model bias.
MoPAC guarantees optimal skill learning up to an approximation error and reduces necessary physical interaction with the environment.
arXiv Detail & Related papers (2021-03-25T13:50:24Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.