論文の概要: DenseTNT: Waymo Open Dataset Motion Prediction Challenge 1st Place
Solution
- arxiv url: http://arxiv.org/abs/2106.14160v1
- Date: Sun, 27 Jun 2021 07:21:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 17:52:50.514863
- Title: DenseTNT: Waymo Open Dataset Motion Prediction Challenge 1st Place
Solution
- Title(参考訳): DenseTNT:Waymo Open Dataset Motion Prediction Challenge 1st Place Solution
- Authors: Junru Gu, Qiao Sun, Hang Zhao
- Abstract要約: 自律運転では、ゴールベースの多軌道予測手法が最近有効であることが証明され、まず最初にゴール候補を決め、次に最終目標を選択し、最後に選択した目標に基づいて軌道を完了させる。
本研究では,軌道予測のための高密度目標確率推定を行うアンカーフリーモデルDenseTNTを提案する。
- 参考スコア(独自算出の注目度): 14.783327438913025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, goal-based multi-trajectory prediction methods are
proved to be effective recently, where they first score goal candidates, then
select a final set of goals, and finally complete trajectories based on the
selected goals. However, these methods usually involve goal predictions based
on sparse predefined anchors. In this work, we propose an anchor-free model,
named DenseTNT, which performs dense goal probability estimation for trajectory
prediction. Our model achieves state-of-the-art performance, and ranks 1st on
the Waymo Open Dataset Motion Prediction Challenge.
- Abstract(参考訳): 自律運転では、ゴールベースの多軌道予測手法が最近有効であることが証明され、まず最初にゴール候補を決め、次に最終目標を選択し、最後に選択した目標に基づいて軌道を完了させる。
しかし、これらの手法は通常、スパース事前定義アンカーに基づく目標予測を伴う。
本研究では,軌道予測のための高密度目標確率推定を行うアンカーフリーモデルDenseTNTを提案する。
我々のモデルは最先端の性能を達成し、Waymo Open Dataset Motion Prediction Challengeで1位にランクインした。
関連論文リスト
- Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
我々のソリューションはArgoverse 2 end-to-end Forecasting Challengeで63.82 mAPfでランクインした。
私たちは、知覚から予測までエンドツーエンドのトレーニングを通じて、このタスクに取り組む現在のトレンドから離れ、代わりにモジュラーアプローチを使用します。
私たちは、昨年の優勝者より+17.1ポイント、今年の優勝者より+13.3ポイント、予測結果を+17.1ポイント上回る。
論文 参考訳(メタデータ) (2024-06-12T11:50:51Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - GoalNet: Goal Areas Oriented Pedestrian Trajectory Prediction [1.9253333342733674]
歩行者の目標領域に基づく新しい軌道予測ニューラルネットワークを提案する。
GoalNetは、従来の最先端のパフォーマンスをJAADで48.7%、PIEデータセットで40.8%改善した。
論文 参考訳(メタデータ) (2024-02-29T09:53:19Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
動き TRansformer (MTR) は、大域的意図の局所化と局所的な動きの洗練の合同最適化として、動き予測をモデル化する。
MTRは、限界運動予測と関節運動予測の両方において最先端の性能を達成する。
論文 参考訳(メタデータ) (2022-09-27T16:23:14Z) - GANet: Goal Area Network for Motion Forecasting [20.38127609086616]
動き予測のための新たな目標領域ベースフレームワークであるGoal Area Network(GANet)を提案する。
GANetはすべての公開文学の中で、Argoverse Challengeのリーダーボードで第1位にランクインしている。
論文 参考訳(メタデータ) (2022-09-20T13:54:12Z) - DenseTNT: End-to-end Trajectory Prediction from Dense Goal Sets [29.239524389784606]
DenseTNTと呼ばれるアンカーフリーかつエンドツーエンドの軌道予測モデルを提案し、高密度な目標候補から一連の軌道を直接出力する。
DenseTNTは最先端のパフォーマンスを達成し、Argoverseのモーション予測ベンチマークで1位、2021年のオープンモーション予測チャレンジで1位を獲得した。
論文 参考訳(メタデータ) (2021-08-22T05:27:35Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position
Estimation [1.20855096102517]
本稿では,人間の軌道予測のための解釈可能な,エンドツーエンドのトレーニング可能なモデルであるGoal-GANを提案する。
人間のナビゲーションにヒントを得て、軌道予測のタスクを直感的な2段階のプロセスとしてモデル化する。
論文 参考訳(メタデータ) (2020-10-02T17:17:45Z) - Map-Adaptive Goal-Based Trajectory Prediction [3.1948816877289263]
本稿では,多モーダル・長期車両軌道予測のための新しい手法を提案する。
提案手法は,各車両に提案された目標経路の集合を生成するために,環境のリッチマップで捉えた車線中心線を利用することに依存する。
本モデルは,6秒の水平線上での車両軌道予測において,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-09-09T17:57:01Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
我々は移動エージェントのための目標駆動軌道予測フレームワークを開発した。
我々は、車や歩行者の軌道予測をベンチマークする。
私たちはArgoverse Forecasting、InterAction、Stanford Drone、および社内のPedestrian-at-Intersectionデータセットの最先端を達成しています。
論文 参考訳(メタデータ) (2020-08-19T06:52:46Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
未来に予測し、計画する能力は、世界で行動するエージェントにとって基本である。
視覚的予測と計画のための現在の学習手法は、長期的タスクでは失敗する。
本稿では,これらの制約を克服可能な視覚的予測と計画のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-23T17:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。