Dynamical Casimir Effect and Work in Fermionic Fields
- URL: http://arxiv.org/abs/2106.14620v1
- Date: Mon, 28 Jun 2021 12:24:23 GMT
- Title: Dynamical Casimir Effect and Work in Fermionic Fields
- Authors: Gianluca Francica
- Abstract summary: We consider a quantum massless fermionic field in (1+1) dimensions in the case of moving boundaries.
We find a Hamiltonian describing the dynamics of the field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a quantum massless fermionic field in (1+1) dimensions in the
case of moving boundaries. We work in the canonical approach in order to find a
Hamiltonian describing the dynamics of the field. Thus, we study the statistics
of work and particles produced from the vacuum by a linear driving of a
boundary.
Related papers
- Classical and quantum field theory in a box with moving boundaries: A numerical study of the Dynamical Casimir Effect [0.0]
We present a detailed description of a quantum scalar field theory within a flat spacetime confined to a cavity with perfectly reflecting moving boundaries.
We establish an equivalence between this time-dependent setting and a field theory on an acoustic metric with static Dirichlet boundary conditions.
arXiv Detail & Related papers (2024-04-09T09:43:39Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - The quantum Hall effect under the influence of gravity and inertia: A
unified approach [44.99833362998488]
We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia.
The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained.
arXiv Detail & Related papers (2024-03-11T18:01:55Z) - Casimir Physics beyond the Proximity Force Approximation: The Derivative
Expansion [49.1574468325115]
We review the derivative expansion (DE) method in Casimir physics, an approach which extends the proximity force approximation (PFA)
We focus on different particular geometries, boundary conditions, types of fields, and quantum and thermal fluctuations.
arXiv Detail & Related papers (2024-02-27T19:56:52Z) - Dynamical Casimir effect for fermions in 2+1 dimensions [0.0]
We study the fermion pair creation phenomenon due to the time dependence of curves, where boundary conditions are imposed on a Dirac field in 2+1 dimensions.
We show that the pair creation effect is maximized for bag boundary conditions, obtained for a particular value of that parameter.
arXiv Detail & Related papers (2023-08-06T16:54:29Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - On the physical origin of the quantum operator formalism [0.0]
We offer a clear physical explanation for the emergence of the quantum operator formalism.
We revisit the role of the vacuum field in quantum mechanics.
arXiv Detail & Related papers (2020-11-24T02:44:44Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Quantum field theory with dynamical boundary conditions and the Casimir
effect [0.0]
We study a coupled system that describes the interacting dynamics between a bulk field, confined to a finite region with timelike boundary, and a boundary observable.
We cast our classical system in the form of an abstract linear Klein-Gordon equation, in an enlarged Hilbert space for the bulk field and the boundary observable.
Specifically, we compute the renormalized local state polarization and the local Casimir energy, which we can define for both the bulk field and the boundary observable of our system.
arXiv Detail & Related papers (2020-04-12T16:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.