Federated Dynamic Spectrum Access
- URL: http://arxiv.org/abs/2106.14976v1
- Date: Mon, 28 Jun 2021 20:49:41 GMT
- Title: Federated Dynamic Spectrum Access
- Authors: Yifei Song, Hao-Hsuan Chang, Zhou Zhou, Shashank Jere and Lingjia Liu
- Abstract summary: We introduce a Federated Learning (FL) based framework for the task of Dynamic Spectrum Access (DSA)
FL is a distributive machine learning framework that can reserve the privacy of network terminals under heterogeneous data distributions.
- Score: 29.302039892247787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the growing volume of data traffic produced by the surge of Internet
of Things (IoT) devices, the demand for radio spectrum resources is approaching
their limitation defined by Federal Communications Commission (FCC). To this
end, Dynamic Spectrum Access (DSA) is considered as a promising technology to
handle this spectrum scarcity. However, standard DSA techniques often rely on
analytical modeling wireless networks, making its application intractable in
under-measured network environments. Therefore, utilizing neural networks to
approximate the network dynamics is an alternative approach. In this article,
we introduce a Federated Learning (FL) based framework for the task of DSA,
where FL is a distributive machine learning framework that can reserve the
privacy of network terminals under heterogeneous data distributions. We discuss
the opportunities, challenges, and opening problems of this framework. To
evaluate its feasibility, we implement a Multi-Agent Reinforcement Learning
(MARL)-based FL as a realization associated with its initial evaluation
results.
Related papers
- Federated Learning for UAV-Based Spectrum Sensing: Enhancing Accuracy Through SNR-Weighted Model Aggregation [0.0]
Unmanned aerial vehicle (UAV) networks need different points of view concerning 3D space, its challenges, and opportunities.
We propose a federated learning (FL)-based method for spectrum sensing in UAV networks to account for their distributed nature and limited computational capacity.
We also develop a federated aggregation method, namely FedSNR, that considers the signal-to-noise ratio observed by UAVs to acquire a global model.
arXiv Detail & Related papers (2024-11-17T19:24:49Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications.
Currently, the exploration of the interplay between FMs and federated learning (FL) is still in its nascent stage.
This article explores the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities.
arXiv Detail & Related papers (2023-10-06T04:13:10Z) - Decentralized Learning over Wireless Networks: The Effect of Broadcast
with Random Access [56.91063444859008]
We investigate the impact of broadcast transmission and probabilistic random access policy on the convergence performance of D-SGD.
Our results demonstrate that optimizing the access probability to maximize the expected number of successful links is a highly effective strategy for accelerating the system convergence.
arXiv Detail & Related papers (2023-05-12T10:32:26Z) - Distributed Learning Meets 6G: A Communication and Computing Perspective [24.631203542364908]
Federated Learning (FL) has emerged as the DL architecture of choice in prominent wireless applications.
As a practical use case, we apply Multi-Agent Reinforcement Learning (MARL) within the FL framework to the Dynamic Spectrum Access (DSA) problem.
Top contemporary challenges in applying DL approaches to 6G networks are also highlighted.
arXiv Detail & Related papers (2023-03-02T15:15:33Z) - CFLIT: Coexisting Federated Learning and Information Transfer [18.30671838758503]
We study the coexistence of over-the-air FL and traditional information transfer (IT) in a mobile edge network.
We propose a coexisting federated learning and information transfer (CFLIT) communication framework, where the FL and IT devices share the wireless spectrum in an OFDM system.
arXiv Detail & Related papers (2022-07-26T13:17:28Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Cooperative Multi-Agent Reinforcement Learning Based Distributed Dynamic
Spectrum Access in Cognitive Radio Networks [46.723006378363785]
Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization.
In this paper, we investigate the distributed DSA problem for multi-user in a typical cognitive radio network.
We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user.
arXiv Detail & Related papers (2021-06-17T06:52:21Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.