Federated Learning for UAV-Based Spectrum Sensing: Enhancing Accuracy Through SNR-Weighted Model Aggregation
- URL: http://arxiv.org/abs/2411.11159v1
- Date: Sun, 17 Nov 2024 19:24:49 GMT
- Title: Federated Learning for UAV-Based Spectrum Sensing: Enhancing Accuracy Through SNR-Weighted Model Aggregation
- Authors: Kürşat Tekbıyık, Güneş Karabulut Kurt, Antoine Lesage-Landry,
- Abstract summary: Unmanned aerial vehicle (UAV) networks need different points of view concerning 3D space, its challenges, and opportunities.
We propose a federated learning (FL)-based method for spectrum sensing in UAV networks to account for their distributed nature and limited computational capacity.
We also develop a federated aggregation method, namely FedSNR, that considers the signal-to-noise ratio observed by UAVs to acquire a global model.
- Score: 0.0
- License:
- Abstract: The increasing demand for data usage in wireless communications requires using wider bands in the spectrum, especially for backhaul links. Yet, allocations in the spectrum for non-communication systems inhibit merging bands to achieve wider bandwidth. To overcome this issue, spectrum-sharing or opportunistic spectrum utilization by secondary users stands out as a promising solution. However, both approaches must minimize interference to primary users. Therefore, spectrum sensing becomes vital for such opportunistic usage, ensuring the proper operation of the primary users. Although this problem has been investigated for 2D networks, unmanned aerial vehicle (UAV) networks need different points of view concerning 3D space, its challenges, and opportunities. For this purpose, we propose a federated learning (FL)-based method for spectrum sensing in UAV networks to account for their distributed nature and limited computational capacity. FL enables local training without sharing raw data while guaranteeing the privacy of local users,lowering communication overhead, and increasing data diversity. Furthermore, we develop a federated aggregation method, namely FedSNR, that considers the signal-to-noise ratio observed by UAVs to acquire a global model. The numerical results show that the proposed architecture and the aggregation method outperform traditional methods.
Related papers
- Collaborative Wideband Spectrum Sensing and Scheduling for Networked
UAVs in UTM Systems [2.755290959487378]
We propose a data-driven framework for collaborative wideband spectrum sensing and scheduling for networked unmanned aerial vehicles (UAVs)
In the spectrum scheduling phase, we leverage reinforcement learning (RL) solutions to dynamically allocate the detected spectrum holes to the secondary users (i.e., UAVs)
This evaluation methodology provides a flexible framework to generate large spectrum datasets that could be used for developing ML/AI-based spectrum management solutions for aerial devices.
arXiv Detail & Related papers (2023-08-09T16:08:44Z) - Deep Reinforcement Learning for Interference Management in UAV-based 3D
Networks: Potentials and Challenges [137.47736805685457]
We show that interference can still be effectively mitigated even without knowing its channel information.
By harnessing interference, the proposed solutions enable the continued growth of civilian UAVs.
arXiv Detail & Related papers (2023-05-11T18:06:46Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
Federated Learning (FL) has emerged as a promising approach for privacy preservation.
This article investigates the performance of FL on an application that might be used to improve a remote healthcare system over ad hoc networks.
We present two metrics to evaluate the network performance: 1) probability of successful transmission while minimizing the interference, and 2) performance of distributed FL model in terms of accuracy and loss.
arXiv Detail & Related papers (2023-03-29T16:36:42Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Federated Dynamic Spectrum Access [29.302039892247787]
We introduce a Federated Learning (FL) based framework for the task of Dynamic Spectrum Access (DSA)
FL is a distributive machine learning framework that can reserve the privacy of network terminals under heterogeneous data distributions.
arXiv Detail & Related papers (2021-06-28T20:49:41Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
A novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network.
An effective channel estimation approach is developed, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction.
A cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution.
arXiv Detail & Related papers (2021-02-02T20:56:46Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.