End-to-end Waveform Learning Through Joint Optimization of Pulse and
Constellation Shaping
- URL: http://arxiv.org/abs/2106.15158v1
- Date: Tue, 29 Jun 2021 08:22:05 GMT
- Title: End-to-end Waveform Learning Through Joint Optimization of Pulse and
Constellation Shaping
- Authors: Fay\c{c}al Ait Aoudia and Jakob Hoydis
- Abstract summary: Communication systems are foreseen to enable new services such as joint communication and sensing.
We present in this work an end-to-end learning approach to design waveforms through joint learning of pulse shaping and constellation geometry.
- Score: 16.26230847183709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As communication systems are foreseen to enable new services such as joint
communication and sensing and utilize parts of the sub-THz spectrum, the design
of novel waveforms that can support these emerging applications becomes
increasingly challenging. We present in this work an end-to-end learning
approach to design waveforms through joint learning of pulse shaping and
constellation geometry, together with a neural network (NN)-based receiver.
Optimization is performed to maximize an achievable information rate, while
satisfying constraints on out-of-band emission and power envelope. Our results
show that the proposed approach enables up to orders of magnitude smaller
adjacent channel leakage ratios (ACLRs) with peak-to-average power ratios
(PAPRs) competitive with traditional filters, without significant loss of
information rate on an additive white Gaussian noise (AWGN) channel, and no
additional complexity at the transmitter.
Related papers
- Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
We propose a learning-based method to design OFDM-based waveforms that satisfy selected constraints while maximizing an achievable information rate.
We show that the end-to-end system is able to satisfy target PAPR and ACLR constraints and allows significant throughput gains.
arXiv Detail & Related papers (2021-10-21T08:58:59Z) - Waveform Learning for Next-Generation Wireless Communication Systems [16.26230847183709]
We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector.
The method maximizes an achievable information rate, while simultaneously satisfying constraints on the adjacent channel leakage ratio (ACLR) and peak-to-average power ratio (PAPR)
arXiv Detail & Related papers (2021-09-02T14:51:16Z) - End-to-End Learning of OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
We propose to use a neural network (NN) at the transmitter to learn a high-dimensional modulation scheme allowing to control the PAPR and adjacent channel leakage ratio (ACLR)
The two NNs operate on top of OFDM, and are jointly optimized in and end-to-end manner using a training algorithm that enforces constraints on the PAPR and ACLR.
arXiv Detail & Related papers (2021-06-30T13:09:30Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
A novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels.
The transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design.
The non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities.
arXiv Detail & Related papers (2021-05-04T02:47:59Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Cluster-Based Cooperative Digital Over-the-Air Aggregation for Wireless
Federated Edge Learning [9.179817518536545]
We study a federated learning system at the wireless edge that uses over-the-air computation (AirComp)
In such a system, users transmit their messages over a multi-access channel concurrently to achieve fast model aggregation.
We propose an improved digital AirComp scheme to relax its requirements on the transmitters, where users perform phase correction and transmit with full power.
arXiv Detail & Related papers (2020-08-03T16:29:52Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.