論文の概要: Artificial Intelligence in Minimally Invasive Interventional Treatment
- arxiv url: http://arxiv.org/abs/2106.15306v1
- Date: Tue, 8 Jun 2021 14:57:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-04 19:37:16.027204
- Title: Artificial Intelligence in Minimally Invasive Interventional Treatment
- Title(参考訳): 侵襲的インターベンショナル治療における人工知能
- Authors: Daniel Ruijters
- Abstract要約: 最小侵襲の画像ガイド処理は、しばしば高度な画像処理アルゴリズムを用いる。
人工知能アルゴリズムの最近の発展は、この領域をさらに強化する可能性を秘めている。
本稿では,最小侵襲治療領域内のいくつかの応用領域について検討し,これらの領域における人工知能の展開について論じる。
- 参考スコア(独自算出の注目度): 0.40611352512781856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Minimally invasive image guided treatment procedures often employ advanced
image processing algorithms. The recent developments of artificial intelligence
algorithms harbor potential to further enhance this domain. In this article we
explore several application areas within the minimally invasive treatment space
and discuss the deployment of artificial intelligence within these areas.
- Abstract(参考訳): 最小侵襲の画像ガイド処理は、しばしば高度な画像処理アルゴリズムを用いる。
人工知能アルゴリズムの最近の発展は、この領域をさらに強化する可能性を秘めている。
本稿では,最小侵襲治療領域内のいくつかの応用領域について検討し,これらの領域における人工知能の展開について論じる。
関連論文リスト
- Artificial Bee Colony optimization of Deep Convolutional Neural Networks
in the context of Biomedical Imaging [9.334663477968027]
我々は,人工蜂コロニーアルゴリズムと進化計算ツールを統合して,スクラッチからモデルを生成する,新しいハイブリッド型ニューロエボレーティブアルゴリズムを提案する。
Chimera Algorithmは、自然画像と医療画像の2つのデータセットで検証され、Transfer Learningのパフォーマンスを上回りました。
論文 参考訳(メタデータ) (2024-02-23T10:21:03Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Medical image registration using unsupervised deep neural network: A
scoping literature review [0.9527960631238173]
医学において、画像登録は画像誘導的介入やその他の臨床応用において不可欠である。
ディープニューラルネットワークの実装は、画像登録を少ない時間で高精度に行うなど、いくつかの医療応用の機会を提供する。
論文 参考訳(メタデータ) (2022-08-03T03:11:34Z) - Diagnosis of Paratuberculosis in Histopathological Images Based on
Explainable Artificial Intelligence and Deep Learning [0.0]
本研究では,Deep Learningアルゴリズムを用いて新しいオリジナルデータセットを探索し,勾配重み付きクラスアクティベーションマッピング(Grad-CAM)を用いて出力を可視化する。
意思決定プロセスと説明文の両方を検証し,出力の精度を検証した。
この研究結果は、病理学者が傍結核の診断に大いに役立っている。
論文 参考訳(メタデータ) (2022-08-02T18:05:26Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Deep Unrolled Recovery in Sparse Biological Imaging [62.997667081978825]
ディープ・アルゴリズム・アンローリング(Deep Algorithm Unrolling)は、反復的アルゴリズムの解釈可能性と教師付きディープラーニングの性能向上を組み合わせたディープ・アーキテクチャを開発するためのモデルベースのアプローチである。
この枠組みは生体イメージングの応用に適しており、測定プロセスを記述する物理モデルが存在し、回復すべき情報がしばしば高度に構造化されている。
論文 参考訳(メタデータ) (2021-09-28T20:22:44Z) - Deep Algorithm Unrolling for Biomedical Imaging [99.73317152134028]
本章では,アルゴリズムのアンロールによるバイオメディカル応用とブレークスルーについて概説する。
我々はアルゴリズムのアンローリングの起源を辿り、反復アルゴリズムをディープネットワークにアンローリングする方法に関する包括的なチュートリアルを提供する。
オープンな課題を議論し、今後の研究方向性を提案することで、この章を締めくくります。
論文 参考訳(メタデータ) (2021-08-15T01:06:26Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
我々は最近200以上の論文をレビュー・要約し、様々な医用画像解析タスクにおける深層学習手法の適用の概要を概観した。
特に,医用画像における最先端の非教師あり半教師あり深層学習の進歩と貢献を強調した。
論文 参考訳(メタデータ) (2021-05-27T18:05:12Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
フォトニック集積回路は超高速な人工ニューラルネットワークを可能にした。
フォトニックニューロモルフィックシステムはナノ秒以下のレイテンシを提供する。
これらのシステムは、機械学習と人工知能の需要の増加に対応する可能性がある。
論文 参考訳(メタデータ) (2020-10-30T21:41:44Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。