Probabilistic Attention for Interactive Segmentation
- URL: http://arxiv.org/abs/2106.15338v1
- Date: Wed, 23 Jun 2021 00:19:43 GMT
- Title: Probabilistic Attention for Interactive Segmentation
- Authors: Prasad Gabbur and Manjot Bilkhu and Javier Movellan
- Abstract summary: We show that the standard dot-product attention in transformers is a special case of Maximum A Posteriori (MAP) inference.
The proposed approach suggests the use of Expectation Maximization algorithms for online adaptation of key and value model parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide a probabilistic interpretation of attention and show that the
standard dot-product attention in transformers is a special case of Maximum A
Posteriori (MAP) inference. The proposed approach suggests the use of
Expectation Maximization algorithms for online adaptation of key and value
model parameters. This approach is useful for cases in which external agents,
e.g., annotators, provide inference-time information about the correct values
of some tokens, e.g, the semantic category of some pixels, and we need for this
new information to propagate to other tokens in a principled manner. We
illustrate the approach on an interactive semantic segmentation task in which
annotators and models collaborate online to improve annotation efficiency.
Using standard benchmarks, we observe that key adaptation boosts model
performance ($\sim10\%$ mIoU) in the low feedback regime and value propagation
improves model responsiveness in the high feedback regime. A PyTorch layer
implementation of our probabilistic attention model will be made publicly
available.
Related papers
- Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - DenseDINO: Boosting Dense Self-Supervised Learning with Token-Based
Point-Level Consistency [12.881617910150688]
We propose a transformer framework for self-supervised learning called DenseDINO to learn dense visual representations.
Specifically, DenseDINO introduces some extra input tokens called reference tokens to match the point-level features with the position prior.
Compared with the vanilla DINO, our approach obtains competitive performance when evaluated on classification in ImageNet.
arXiv Detail & Related papers (2023-06-06T15:04:45Z) - Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models [48.77653835765705]
We introduce a probabilistic resolution to prompt tuning, where the label-specific prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model.
We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts.
arXiv Detail & Related papers (2023-03-16T06:09:15Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Improving Hyperparameter Optimization by Planning Ahead [3.8673630752805432]
We propose a novel transfer learning approach, defined within the context of model-based reinforcement learning.
We propose a new variant of model predictive control which employs a simple look-ahead strategy as a policy.
Our experiments on three meta-datasets comparing to state-of-the-art HPO algorithms show that the proposed method can outperform all baselines.
arXiv Detail & Related papers (2021-10-15T11:46:14Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Bayesian Attention Modules [65.52970388117923]
We propose a scalable version of attention that is easy to implement and optimize.
Our experiments show the proposed method brings consistent improvements over the corresponding baselines.
arXiv Detail & Related papers (2020-10-20T20:30:55Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.